Home
Class 11
MATHS
माना f(k) (x)= (1)/(k) (sin ^(k) x + cos...

माना `f_(k) (x)= (1)/(k) (sin ^(k) x + cos^(k) x)` है ,जहाँ `x epsilon R ` तथा ` k ge 1` है तो `f_(4) (x)- f_(6) (x)` बराबर है।

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f_(k) ""=(1)/(k) ( sin ^(k) x + cos^(k)x), where x in RR and k gt 1 then f_(4) (x)- f_(6)(x) equals -

Let f_(4)(x) = (1)/(k) [ sin^(k) + cos^(k) x ] where x in RR and k ge 1. then f_(4)(x) - f_(6)(x) =

If f_(k) (x) = (1)/(k)(sin^(k) x + cos^(k)x) where x in R,k le 1 the f_(4)(x)-f_(6)(x)=

Let f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) where x in R and k ge1 , then f_(4)(x)-f_(6)(x) equals

Let F_(k)(x)=1/k (sin^(k)x+cos^(k)x) , where x in R and k ge 1 , then find the value of F_(4)(x)-F_(6)(x) .

Let F_(k)(x)=1/k (sin^(k)x+cos^(k)x) , where x in R and k ge 1 , then find the value of F_(4)(x)-F_(6)(x) .

Let f_k(x)=(1)/(k)(sin^k x+ cos^k x) " where " x in R and k ge 1 . Then f_4(x)-f_6(x) equals

Let f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) where x in R and kge1 then f_(4)(x)-f_(6)(x) equals