Home
Class 12
MATHS
If AD, BE and CF are the medians of a AB...

If AD, BE and CF are the medians of a ABC ,then `(AD^(2)+BE^(2)+CF^(2)):(BC^(2)+CA^(2)+AB^(2))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If AD, BE and CF are the medians of a triangle ABC, then AD^(2) + BE^(2) + CF^(2) :BC^(2)+CA^(2)+AB^(2) is equal to

If AD, BE and CF are the medians of a Delta ABC, then evaluate (AD^(2)+BE^(2)+CF^(2)): (BC^(2) +CA^(2) +AB^(2)).

If AD, BE and CF are the medians of a Delta ABC, then evaluate (AD^(2)+BE^(2)+CF^(2)): (BC^(2) +CA^(2) +AB^(2)).

If AD, BE and CF are the medians of a Delta ABC, then evaluate (AD^(2)+BE^(2)+CF^(2)): (BC^(2) +CA^(2) +AB^(2)).

If AD , BE and CF are medians of DeltaABC , then bar(AD) + bar(BE) + bar(CF) =

In triangleABC , AD, BE, CF are the medians. Prove that, 4(AD^(2)+BE^(2)+CF^(2))= 3(AB^(2)+BC^(2)+AC^(2)) .

If AD, BE and CF be the median of a /_\ABC , prove that vec(AD)+vec(BE)+vec(CF) =0

If AD, BE and CF be the median of a /_\ABC , prove that vec(AD)+vec(BE)+vec(CF) =0

AD BE and CF are the medians of a Delta ABC .Prove that 2(AD+BE+CF)<3(AB+BC+CA)<4(AD+BE+CF)