Home
Class 12
MATHS
If the vectors ai + j + k , i + bj + k a...

If the vectors ai + j + k , i + bj + k and i + j + ck, where a, b, c `ne1`, are coplanar,
then : `1/(1-a)+1/(1-b)+1/(1-c)=…`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors pi + j + k, i + qj + k and i + j + rk, where pneqnerne1 are coplanar, then : pqr- (p + q + r) =…..

If the vectors vec r_(1) = ai+j+k, vec r_(2) = i + bj + k, vec r_(3) = i + j + ck ( a ne 1, b ne 1, c ne 1) are coplanar then the value of 1/(1-a) + 1/(1-b) + 1/(1-c) =

If the vectors vec A = a hat i + hat j + hat k, vec B = hat i + b hat j + hat k and vec C = hat i + hat j + chat k are coplanar, then (1)/(1-a) + (1)/(1-b) +(1)/(1-c) = 1 where a,b, c ne 1 .

If the vectors ai +j + k , i-bj+k, i+j-ck are co-planar, then abc + 2 =

If the vectors a hat(i) + hat(j) + hat(k), hat(i) + b hat(j) + hat(k) and hat(i) + hat(j) + c hat(k) (a,b ne 1) are coplanar then the value of (1)/(1-a) + (1)/(1-b) + (1)/(1-c) is equal to

If ahat i+hat j+hat khat i+bhat j+hat khat i+hat j+chat k are coplaner then (1)/(1-a)+(1)/(1-b)+(1)/(1-c)=

If the vectors vecalpha=a hat i+ hat j+ hat k , vecbeta= hat i+b hat j+ hat ka n d vecgamma= hat i+ hat j+c hat k are coplanar, then prove that 1/(1-a)+1/(1+b)+1/(1-c)=1,w h e r ea!=1,b!=1a n dc!=1.