Home
Class 12
MATHS
int0^(n^2) [sqrt(x)] dx is equal to (whe...

`int_0^(n^2) [sqrt(x)] dx` is equal to (where [.] denotes greatest integer function): (A) `n(n+1)(4n+1)/6` (B) `n(n-1)(4n+1)/6` (C) `n(n-1)(4n-1)/6` D) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-n)^(n)(-1)^([x])backslash dx when n in N= in all of these [.] denotes the greatest integer function

Lim_(n->oo)(sqrt(n^2+n+1)-[n^2+n+1])(n in I) where [ ] denote the greatest integer functionis is

If (6sqrt(6)+14 )^(2n+1) = [N]+F and F=N -[N] , where [.] denotes greatest interger function then NF is equal to

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

Let S_(n)=sum_(r+1)^(n)r!(n>6), then S_(n)-7[(S_(n))/(7)] (where [.] denotes the greatest integer function) is equal to (A) [(n)/(7)](B)n!-7[(n-1)/(7)](C)5(D)3

int_(0)^(x)[sin t]dt, where x in(2n pi,(2n+1)pi),n in N, and [.] denotes the greatest integer function is equal to -n pi(b)-(n+1)pi2n pi(d)-(2n+1)pi