Home
Class 12
MATHS
Let f(x)=(x+x^2+.....+x^n-n)/(x-1), x!=1...

Let `f(x)=(x+x^2+.....+x^n-n)/(x-1), x!=1,` then value of `f(1)` so that `f` is continuous is (A) `n` (B) `(n(n-1))/2` (C) `(n(n+1))/2` (D) `(n+1)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = (x + x^(2) + ...+ x^(n)-n)/(x -1), x ne 1 , the value of f (1)

Let f(x)=(x-1)(x-2)(x-3)...(x-n),n in N, and f(n)=5040 Then the value of n is

Let f(x) = (x^2 - 1)^(n+1) + (x^2 + x + 1) . Then f(x) has local extremum at x = 1 , when n is (A) n = 2 (C) n = 4 (B) n = 3 (D) n = 5

If f(x) = (x^n-a^n)/(x-a) , then f'(a) is a. 1 b. 1/2 c. 0 d. does not exist

Let f(x) = (x^2 - 1)^(n+1) * (x^2 + x + 1) . Then f(x) has local extremum at x = 1 , when n is (A) n = 2 (B) n = 4 (C) n = 3 (D) n = 5

f(x)=(x^(n)-1)/(x-1),x!=1 and f(x)=n^(2),x=1 continuous at x=1 then the value of n

Let f(x)= underset(n to 00) (Lt) (x^(2n)-1)/(x^(2n)+1) , then

Let f(x)=(x-1)(x-2)(x-3)(x-n),n in N ,a n df(n)=5040. Then the value of n is________