Home
Class 12
MATHS
Consider the function f(x)=max{|sinx|,|c...

Consider the function `f(x)=max{|sinx|,|cosx|},AA"x"in[0,3pi].` if `lamda` is the number of points at which f(x) is non - differentiable , then value of `(lamda^3)/5` is

Promotional Banner

Similar Questions

Explore conceptually related problems

For the function f(x)=sinx+2cosx,AA"x"in[0,2pi] we obtain

For the function f(x)=sinx+2cosx,AA"x"in[0,2pi] we obtain

If f(x)=max{tanx, sin x, cos x} where x in [-(pi)/(2),(3pi)/(2)) then the number of points, where f(x) is non -differentiable, is

If f(x)=max{tanx, sin x, cos x} where x in [-(pi)/(2),(3pi)/(2)) then the number of points, where f(x) is non -differentiable, is

Let f:[0,(pi)/(2)]rarr R a function defined by f(x)=max{sin x,cos x,(3)/(4)} ,then number of points where f(x) is non-differentiable is

Let f(x)=max{sinx,cosx}AA"x"inR then number of critical points of f(x) in (0,2pi) is

Let f: [0,(pi)/(2)]rarr R be a function defined by f(x)=max{sin x, cos x,(3)/(4)} ,then number of points where f(x) in non-differentiable is

Consider the function: f(x)=max.{1,|x-1|, min {4,|3x-1|}}AA x in R. Then find the value of f(3).

Find the range of the following function f(x)=max{sinx, cosx}

If f(x)=|x^(2)-3x+2|+|sinx| then number of points where f(x) is not differentiable in [-pi,pi] is