Home
Class 11
MATHS
1/(2*5)+1/(5*8)+1/(8*11)+............1/(...

`1/(2*5)+1/(5*8)+1/(8*11)+............1/((3n-1)(3n+2))=n/((6n+4)) forall n in N.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using mathimatical induction prove that 1/(2.5)+1/(5.8)+1/(8.11)+......+1/((3n-1)(3n+2))=n/(6n+4) for all n in N .

1/1.4+1/4.7+1/7.10+...+1/((3n-2)(3n+1))=n/((3n+1)) forall n in N.

Prove the following by using the principle of mathematical induction for all n in N : 1/(2. 5)+1/(5. 8)+1/(8. 11)+...+1/((3n-1)(3n+2))=n/((6n+4))

Prove that by using the principle of mathematical induction for all n in N : (1)/(2.5)+ (1)/(5.8) + (1)/(8.11)+ ...+(1)/((3n-1)(3n+2))= (n)/(6n+4)

Prove that by using the principle of mathematical induction for all n in N : (1)/(2.5)+ (1)/(5.8) + (1)/(8.11)+ ...+(1)/((3n-1)(3n+2))= (n)/(6n+4)

Prove the following by using the principle of mathematical induction for all n in Nvdots(1)/(2.5)+(1)/(5.8)+(1)/(8.11)+...+(1)/((3n-1)(3n+2))=(n)/((6n+4))=(n)/((6n+4))

Prove the following by using the principle of mathematical induction for all n in N (1)/(2.5) + (1)/(5.8) + (1)/(8.11) + ……. + (1)/((3n-1)(3n+2)) =(n)/((6n + 4))

1/1.2+1/2.3+1/3.4+…………….+1/(n(n+1))=n/(n+1) forall n in N.

1^(2)+2^(2)+3^(2)+............+n^(2)=(n(n+1)(2n+1))/6 forall n in N.