Home
Class 14
MATHS
9*sin^(-1)x+sin^(-1)sqrt(1-x^(2))...

9*sin^(-1)x+sin^(-1)sqrt(1-x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)(1-x)=sin^(-1)sqrt(1-x^(2)), then x is equal to

(sin^(-1)x)/(sqrt(1-x^(2))

(sin^(-1)x)/(sqrt(1-x^(2))

sin^(-1)[sqrt(x^(2)-x^(3))-sqrt(x-x^(3))]=..... a) sin^(-1)x+sin^(-1)sqrt(x) b) sin^(-1)x-sin^(-1)sqrt(x) c) sin^(-1)sqrt(x)-sin^(-1)x d) 2sin^(-1)x

Solve: sin^-1 (x)+ sin (sqrt(1-x^2))=

Prove the following: sin^-1x-sin^-1y = sin^-1[x(sqrt(1-y^2))-y(sqrt(1-x^2))]

Prove that : 2 sin^-1 x = sin^-1 (2x sqrt(1-x^2)), |x| le (1/(sqrt2)

(sin ^(-1) x )/( sqrt( 1 - x ^(2)) )

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .