Home
Class 10
MATHS
If k tan theta=tan k theta, then prove t...

If `k tan theta=tan k theta`, then prove that `(sin^(2)k theta)/(sin^(2)theta)=(k^(2))/((k^(2)-1)sin^(2)theta+1).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos ec theta+cot theta=k then prove that cos theta=(k^(2)-1)/(k^(2)+1)

If cosec theta + cot theta =k , then prove that cos theta =(k^(2)-1)/( k^(2)+1)

If cosec theta + cot theta =k , then prove that cos theta =(k^(2)-1)/( k^(2)+1)

If cosec theta + cot theta =k , then prove that cos theta =(k^(2)-1)/( k^(2)+1)

If cosec theta + cot theta =k , then prove that cos theta =(k^(2)-1)/( k^(2)+1)

If cosec theta + cot theta =k , then prove that cos theta =(k^(2)-1)/( k^(2)+1)

Prove that : (1 - tan^(2) theta)/(1 + tan^(2) theta) = cos^(2) theta - sin^(2) theta

prove that :(1-sin2 theta)/(1+sin2 theta)=((1-tan theta)/(1+tan theta))^(2)

If sin 2 theta=k then the value of (tan^(3) theta)/(1+tan^(2) theta)+(cot^(3) theta)/(1+cot^(2) theta)=

If tan theta=k , then show that sec theta+tan^(3)theta "cosec"theta=(1+k^(2))^((3)/(2)) .