Home
Class 9
MATHS
In P is a point in the interior of a par...

In P is a point in the interior of a parallelogram ABCD. Show that`
(ii) `ar (APD) + ar (PBC) = ar (APB) + ar (PCD)`

Promotional Banner

Similar Questions

Explore conceptually related problems

IN the figure, P is a point in the interior of a parallelogram ABCD. Show that (i) ar(APB) + ar(PCD) = 1/2 ar (ABCD) (ii) ar (APD) + ar(PBC) = ar(APB) + ar (PCD)

P is a point in the interior of a parallelogram ABCD. Show that ar (Delta APD) + ar ( DeltaPBC) = ar ( DeltaAPB) + ar (DeltaPCD)

P is a point in the interior of a parallelogram ABCD. Show that (i) ar (DeltaAPB) +ar (DeltaPCD)=1/2ar (ABCD) (ii) ar(DeltaAPD)+ar (DeltaPBC)=ar(DeltaAPB)+ar(DeltaPCD) (Hint : Throught , P draw a line parallel to AB)

P is a point in the interior of a parallelogram ABCD. Show that (i) ar (DeltaAPB) +ar (DeltaPCD)=1/2ar (ABCD) (ii) ar(DeltaAPD)+ar (DeltaPBC)=ar(DeltaAPB)+ar(DeltaPCD) (Hint : Throught , P draw a line parallel to AB)

P is a point in the interior of a parallelogram ABCD. Show that (i) ar (DeltaAPB) +ar (DeltaPCD)=1/2ar (ABCD) (ii) ar(DeltaAPD)+ar (DeltaPBC)=ar(DeltaAPB)+ar(DeltaPCD) (Hint : Throught , P draw a line parallel to AB)

In the adjacent figure P is a point inside the parallelogram ABCD. Prove that ar (APD) + ar (PBC) = ar (APB) + ar (PCD)

In Fig.9.16,P is a point in the interior of a parallelogram ABCD.Show that (i) ar(APB)+ar(PCD)=(1)/(2)ar(ABCD)(ii)ar(APD)+ar(PBC)=ar(APB)+ar(PCD)

In the figure, P is a point in the interior of a parallelogram ABCD. Show that (i) ar (triangleAPB)+ar(trianglePCD=1/2ar(ABCD) (ii) ar (triangleAPD)+ar(trianglePBC)=ar(triangleAPB)+ar(trianglePCD)

In the adjoining figure, P is the point in the interior of a parallelogram ABCD.Show that ar(DeltaAPB) ar(DeltaPCD) =1/2ar(||gm ABCD)

In the adjacent figure P is a point inside the parallelogram ABCD. Prove that ar (APB) + ar (PCD) = 1/(2) ar (ABCD)