Home
Class 12
MATHS
If alpha,beta,gamma are the angles of a ...

If `alpha,beta,gamma` are the angles of a triangle and system of equations `cos(alpha-beta)x+cos(beta-gamma)y+cos(gamma-alpha)z=0` `cos(alpha+beta)x+cos(beta+gamma)y+cos(gamma+alpha)z=0` `sin(alpha+beta)x+sin(beta+gamma)y+sin(gamma+alpha)z=0` has non-trivial solutions, then triangle is necessarily a. equilateral b. isosceles c. right angled`""` d. acute angled

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the angles of a triangle and system of equations cos(alpha-beta)x+cos(beta-gamma)y+cos(gamma-alpha)z=0cos(alpha+beta)x+cos(beta+gamma)y+cos(gamma+alpha)z=0sin(alpha+beta)x+sin(beta+gamma)y+sin(gamma+alpha)z=0 has non-trivial solutions,then triangle is necessarily a.equilateral b.isosceles c.right angled

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)=-(3)/(2), prove that cos alpha+cos beta+cos gamma=sin alpha+sin beta+sin gamma=0

If cos (alpha - beta) + cos (beta - gamma) + cos (gamma - alpha) = (-3)/(2) then prove that cos alpha + cos beta+ cos gamma = sin alpha + sin beta + sin gamma = 0 .

cos(alpha-beta)+cos(beta+gamma)+cos(gamma-alpha)=-(3)/(2) prove that: cos alpha+cos beta+cos gamma=sin alpha+sin beta+sin gamma=0

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta) =

cos alpha sin (beta-gamma)+cos betasin (gamma-alpha+cos gamma sin (alpha-beta)=

cos alpha sin (beta-gamma)+cos beta sin (gamma-alpha) +cos gamma(sin alpha-beta)=

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

If alpha,beta, gamma are any three angles , then cos alpha + cos beta - cos gamma - cos (alpha+beta+gamma)=