Home
Class 12
MATHS
" (i) "(x^(3)y^(2)+xy)dx=dy...

" (i) "(x^(3)y^(2)+xy)dx=dy

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve xy^(2)dy -(x^(3)+y^(3))dx=0 .

y The differential equation of all circles passing through the origin and having their centres on the x-axis is (1)x^(2)=y^(2)+xy(dy)/(dx) (2) x^(2)=y^(2)+3xy(dy)/(dx)y^(2)=x^(2)+3xy(dy)/(dx)y^(2)=x^(2)-2xy(dy)/(dx)

Solve: (x^(3)+3xy^(2))dx=(y^(3)-3x^(2)y)dy

Find (dy)/(dx) in the following: (a) x^(3)+x^(2)y+xy^(2)+y^(3)=81(b)xy+y^(2)=tan x+y(c)x^(2)+xy+y^(2)=100

(dy)/(dx) = (x^(2)+y^(2))/(xy)

(dy)/(dx)=x^(3)y^(3)-xy

(x^(2) y^(3) + 2xy) dy = dx

(dy)/(dx)=(x^(2)-y^(2))/(xy)