Home
Class 11
MATHS
" (ii) "Lt(x rarr4)(x^(3/2)-8)/(x-4)...

" (ii) "Lt_(x rarr4)(x^(3/2)-8)/(x-4)

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 4) (x^(3/2)-8)/(x-4) =

lim_(x rarr4)((x^(3//2)-8)/(x-4)) =

lim_(x rarr2)(x^(3)-8)/(x^(2)-4)

Consider following statements and identify correct options (i) lim_(x rarr4)((2x)/(x-2)-(8)/(x-4))=lim_(x rarr4)((2x)/(x-4))-lim_(x rarr4)((8)/(x-4)) (ii) lim_(x rarr1)((x^(2)+6x-7)/(x^(2)+5x-6))=(lim_(x rarr1)(x^(2)+6x-7))/(lim_(x rarr1)(x^(2)+5x-6))

COnsider the following statements and identify the correct options ( i ) lim_(x rarr4)((2x)/(x-4)-(8)/(x-4))=lim_(x rarr4)(2x)/(x-4)-lim_(x rarr4)(8)/(x-4) (ii) lim_(x rarr1)(x^(2)+6x-7)/(x^(2)+5x-6)=(lim_(x rarr1)(x^(2)+6x-7))/(lim_(x rarr1)(x^(2)+5x-6))

lim_(x rarr4)(sqrt(x)-2)/(x-4)=

Lt_(x rarr4^(+))(x^(2)-7x+12)/(x-[x]) =[ where [ ] denotes G.I.F.]

Lt_(x rarr0)(e^(x)-1)/(sqrt(4+x)-2)=

Evaluate the following limit: (lim)_(x rarr4)(x^(2)-7x+12)/(x^(2)-3x-4)

Lt_(x rarr0)(x-sin x)/(x^(3))