Home
Class 12
MATHS
The value of lim ( x to (pi)/(4))(int(2 ...

The value of `lim _( x to (pi)/(4))(int_(2 ) ^(cosec ^(2)x)tg (t )dt)/(x ^(2)-(pi^(2))/(16))` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr (pi)/(4)) (int_(2)^(sec^(2)x) f(t) dt)/(x^(2) - (pi^(2))/(16)) equals :

lim_(x rarr(pi)/(4))(int_(2)^(sec^(2)x)f(t)dt)/(x^(2)-(pi^(2))/(16)) equals:

lim_(x rarr(pi)/(4))(int_(2)^(sec^(2)x)f(t)dt)/(x^(2)-(pi^(2))/(16)) equal :

lim_(xrarr(pi)/(4)) (int_(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/(16)) is equal to

lim_(xrarr(pi)/(4)) (int_(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/(16)) is equal to

Evaluate lim_(x to (pi)/(2))(1+sinx)^(2"cosec x")

The value of lim _(x to pi/4) (pi/4 int_2^(sec^2x)f(x)dx)/(x^2-pi^2/16) is

lim_(x rarrpi/4)(int_2^(sec^2x) f(t)dt)/(x^2-pi^2/16)