Home
Class 12
MATHS
e^(x)+e^(y)=e^(x+y)" then prove that "(d...

e^(x)+e^(y)=e^(x+y)" then prove that "(dy)/(dx)+(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1))=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^x + e^y = e^(x +y) , prove that (dy)/(dx) = (e^x (e^y - 1))/(e^y (e^x - 1))

If e^(x)+e^(y)=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0 .

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1))

If e^x+e^y=e^(x+y) then prove that dy/dx =- e^(y-x)

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0