Home
Class 12
MATHS
" Find "(dy)/(dx):x=a(cos t+log tan(t)/(...

" Find "(dy)/(dx):x=a(cos t+log tan(t)/(2)),y=a sin t

Promotional Banner

Similar Questions

Explore conceptually related problems

If x and y are connected parametrically by the equation without eliminating the parameter, find (dy/dx) if x=a(cos t+log tan (t/2)), y=a sin t

Find dy/dx if: x= a(cos t + log tan (t/2)), y= a sin t

Find (dy)/(dx)," if "x=a(cos t+log tan""t/2), y=a sin t .

Find (dy)/(dx) when : x=a(cos t+"log tan"(t)/(2)), y=a sin t

Find (dy)/(dx):x=a{cos t+(1)/(2)log tan^(2)(t)/(2)} and y=a sin t

Find (dy)/(dx) if:- x = cos t,y= tan t

Find the dy/dx when x = a[cos t + log tan (t//2)], y = a sin t

If x=a (cos t +log (tan ((t)/(2)) )) ,y =a sin t ,then (dy)/(dx) =

If x=a (cos t +log (tan ((t)/(2)) )) ,y =a sin t ,then (dy)/(dx) =

Find (dy)/(dx) if: x=a(cos t+(1)/(2)ln tan^(2)(t)/(2)) and y=a sin t.x=sin t sqrt(cos2t) and y=cost sqrt(cos2t)