Home
Class 12
MATHS
If y=acos(sinx)+bsin(sinx) then prove th...

If `y=acos(sinx)+bsin(sinx)` then prove that `y''+(tanx)y'+ycos^(2)x=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin(sinx) then show that y''+(tanx)y'+ycos^(2)x=0.

If y=sin(sinx) then prove that y_2+(tanx)y_1+ycos^2x=0

If y=acos(lnx)+bsin(lnx) then prove that x^2y_3+3x y_2+2y_1=0

If y=sin(sinx) then prove that (d^2y)/(dx^2)+tanx. (dy)/(dx)+y cos^2x=0

y=x^(sinx)+a^(sinx)

y=x^(sinx)+a^(sinx)

If y="sin"(sinx),"prove that" (d^2y)/(dx^2)+tanx(dy)/(dx)+ycos^2x=0.

If y=(tanx)^(sinx) , then dy/dx=

If y=(sinx)^((sinx)^((sinx)...oo))," prove that "(dy)/(dx)=(y^(2)cotx)/((1-ylog sinx)).