Home
Class 11
MATHS
If e^(sin x)-e^(-sin x)-4=0 , then x= ...

If `e^(sin x)-e^(-sin x)-4=0` , then `x=` `0` (b) `sin^(-1){(log)_e(2+sqrt(5))}` (c) `1` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(sin x)-e^(-sin x)-4=0 , then x= (a) 0 (b) sin^(-1){(log)_e(2+sqrt(5))} (c) 1 (d) none of these

Solve e^(sin x)-e^(-sin x) - 4 = 0 .

Solve e^(sin x)-e^(-sin x) - 4 = 0 .

Solve e^(sin x)-e^(-sin x) - 4 = 0 .

The equation e^(sin x)-e^(-sin x)-4=0 has

The equation e^(sin x)-e^(-sin x)-4=0 has

The equation e^(sin x) -e^(-sin x)-4=0 has

If sin h^(-1)(x)=log_(e)(5+sqrt(26)) then x=