Home
Class 11
MATHS
[" 0ints "A(3,-4,-5)" and "B(2,-3,1)" in...

[" 0ints "A(3,-4,-5)" and "B(2,-3,1)" intersects "2x+y+z=7],[A=|[1," tanx "],[" - tanx ",1]|" ,then show that "A^(T)A^(-1)=|[" cos "2x,-" sir "],[" sin "2x," cos "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=|[1,tanx],[-tanx,1]| , show that A^T\ A^(-1)=|[cos2x,-sin2x],[sin2x,cos2x]| .

If A=|[1,tanx],[-tanx,1]| , show that A^T\ A^(-1)=|[cos2x,-sin2x],[sin2x,cos2x]| .

If A=[[1,tanx],[-tanx,1]], show that A^T A^(-1)=[[cos2x,-sin2x],[sin2x,cos2x]]

If A=[(1,tanx),(-tanx, 1)], " show that " A' A^(-1)=[(cos 2x,-sin 2x),(sin 2x, cos 2x)] .

IF A=[(1,tanx),(-tanx,1):}] then show that A^TA^-1=[(cos2x,-sin2x),(sin2x,cos 2x):}]

If A=[[1,tanx],[-tanx,1]] ,Show that A^TA^(-1)=[[cos2x,-sin2x],[sin2x,cos2x]]

A=[{:(1 ,tanx),(-tanx," "1):}] "show that"" "A^(T)A^(-1)=[{:(cos2x,-sin2x),(sin2x,cos2x):}].

If A=[(1,tanx),(-tanx,1)] , Show that, A^TA^-1=[(cos2x,-sin2x),(sin2x,cos2x)] .

If A = {:[(1,tanx),(-tanx,1)] , show that : A'A^-1={:[(cos2x,-sin2x),(sin2x,cos2x)]

If tan x=(1)/(7) and tan y=(1)/(3) show that cos 2x = sin 4y