Home
Class 12
MATHS
int(-pi//2)^(pi//2)sin^(9)x cos^(5)xdx e...

`int_(-pi//2)^(pi//2)sin^(9)x cos^(5)xdx` equals

A

`(1)/(20)`

B

20

C

0

D

`(1)/(330)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^9 x \cos^5 x \, dx \), we will use the properties of definite integrals, specifically focusing on whether the integrand is an odd or even function. ### Step-by-Step Solution: 1. **Identify the Integral**: We need to evaluate the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^9 x \cos^5 x \, dx \] 2. **Check for Odd or Even Function**: To determine if the function \( f(x) = \sin^9 x \cos^5 x \) is odd or even, we will compute \( f(-x) \): \[ f(-x) = \sin^9(-x) \cos^5(-x) \] Using the properties of sine and cosine: \[ \sin(-x) = -\sin(x) \quad \text{and} \quad \cos(-x) = \cos(x) \] Therefore, \[ f(-x) = (-\sin x)^9 \cdot (\cos x)^5 = -\sin^9 x \cos^5 x = -f(x) \] 3. **Conclusion on the Function**: Since \( f(-x) = -f(x) \), the function \( f(x) \) is an odd function. 4. **Apply the Property of Definite Integrals**: The property states that the integral of an odd function over a symmetric interval around zero is zero: \[ \int_{-a}^{a} f(x) \, dx = 0 \quad \text{for odd } f(x) \] Thus, we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^9 x \cos^5 x \, dx = 0 \] ### Final Answer: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^9 x \cos^5 x \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

int_(-pi/2)^( pi/2)sin^(5)xdx

int_(-pi/2)^(pi/2)sin xdx

int_(0)^(pi/2)sin^(6)x cos^(5)xdx=

int_(-pi/2)^( pi/2)x*sin xdx

int_(0)^((pi)/(2))sin^(2)x cos^(5)xdx equals (A)(16)/(105) (B) (8)/(105) (C) ((16)/(105))pi(D)((8)/(105))pi

" 9."int_(0)^( pi/2)sin^(6)x cos^(3)xdx

int_(0)^( pi/2)sin^(6)x cos^(2)xdx

int_(0)^( pi/2)sin^(2)x cos^(3)xdx

int_(0)^((pi)/(2))sin^(2)x cos^(3)xdx=

int_(0)^((pi)/(2))sin^(4)x cos^(4)xdx