Home
Class 12
MATHS
If h(x)=int(0)^(x)sin^(4)tdt, then h(x+p...

If `h(x)=int_(0)^(x)sin^(4)tdt`, then `h(x+pi)` equals

A

`(h(x))/(h(pi))`

B

`h(x).h(pi)`

C

`h(x)-h(pi)`

D

`h(x)+h(pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( h(x + \pi) \) where \( h(x) = \int_0^x \sin^4 t \, dt \). ### Step-by-Step Solution: 1. **Define \( h(x + \pi) \)**: \[ h(x + \pi) = \int_0^{x + \pi} \sin^4 t \, dt \] 2. **Break the Integral**: We can break the integral from \( 0 \) to \( x + \pi \) into two parts: \[ h(x + \pi) = \int_0^{\pi} \sin^4 t \, dt + \int_{\pi}^{x + \pi} \sin^4 t \, dt \] 3. **Evaluate the First Integral**: The first part is simply: \[ \int_0^{\pi} \sin^4 t \, dt \] This integral can be computed separately, but we will denote it as \( I \) for now. 4. **Change of Variables for the Second Integral**: For the second integral, we can use the substitution \( u = t - \pi \). Then \( dt = du \) and when \( t = \pi \), \( u = 0 \) and when \( t = x + \pi \), \( u = x \): \[ \int_{\pi}^{x + \pi} \sin^4 t \, dt = \int_0^{x} \sin^4(u + \pi) \, du \] Since \( \sin(u + \pi) = -\sin u \), we have: \[ \sin^4(u + \pi) = (-\sin u)^4 = \sin^4 u \] Thus, the integral becomes: \[ \int_{\pi}^{x + \pi} \sin^4 t \, dt = \int_0^{x} \sin^4 u \, du = h(x) \] 5. **Combine the Results**: Now we can combine the results: \[ h(x + \pi) = I + h(x) \] where \( I = \int_0^{\pi} \sin^4 t \, dt \). 6. **Final Expression**: Therefore, we have: \[ h(x + \pi) = \int_0^{\pi} \sin^4 t \, dt + h(x) \] ### Conclusion: The final result is: \[ h(x + \pi) = h(x) + \int_0^{\pi} \sin^4 t \, dt \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(0)^(x)sin^(6)tdt, then f(x+pi)=

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x)=int_(0)^(x)(sin^(4)t+cos^(4)t)dt, then f(x+pi) will be equal to

f(x)=int_(0)^(1)|t-x|tdt

If g(x)=int_(0)^(x)cos4tdt then equals: (1)(g(x))/(g(pi))(2)g(x)+g(pi)(3)g(x)-g(pi)(4)g(x)*g(pi)

The value of lim_(xrarr0) (int_(0)^(x)tdt)/(xtan (x+pi)) is equal to

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

If int_(0)^(pi) x f (sin x) dx = A int _(0)^(pi//2) f(sin x) dx , then A is equal to

If int_(0)^(y)e^(-t^(2))dt+int_(0)^(x^(2))sin^(2)tdt=0 , then (dy)/(dx) at x=y=1 is

int_(0)^( pi/4)sin|x|dx