Home
Class 12
MATHS
For any value of nin I, int(0)^(pi)e^(co...

For any value of `nin I, int_(0)^(pi)e^(cos^(2)x)cos^(3)[(2n+1)x]dx` equals

A

1

B

2

C

`-1`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} e^{\cos^2 x} \cos^3((2n+1)x) \, dx \), we will use the property of definite integrals and symmetry. ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{\pi} e^{\cos^2 x} \cos^3((2n+1)x) \, dx \] ### Step 2: Use the property of definite integrals We can change the variable in the integral by letting \( x = \pi - t \). Then, \( dx = -dt \) and the limits change from \( x = 0 \) to \( x = \pi \) into \( t = \pi \) to \( t = 0 \). Therefore, we have: \[ I = \int_{\pi}^{0} e^{\cos^2(\pi - t)} \cos^3((2n+1)(\pi - t)) (-dt) = \int_{0}^{\pi} e^{\cos^2(\pi - t)} \cos^3((2n+1)(\pi - t)) \, dt \] ### Step 3: Simplify the expressions Using the properties of cosine and the fact that \( \cos(\pi - t) = -\cos(t) \), we can rewrite the integral: \[ I = \int_{0}^{\pi} e^{\cos^2 t} \cos^3((2n+1)(\pi - t)) \, dt = \int_{0}^{\pi} e^{\cos^2 t} \cos^3(-(2n+1)t) \, dt \] Since \( \cos(-\theta) = \cos(\theta) \), this gives us: \[ I = \int_{0}^{\pi} e^{\cos^2 t} (-\cos^3((2n+1)t)) \, dt = -\int_{0}^{\pi} e^{\cos^2 t} \cos^3((2n+1)t) \, dt = -I \] ### Step 4: Solve for \( I \) From the equation \( I = -I \), we can add \( I \) to both sides: \[ I + I = 0 \implies 2I = 0 \implies I = 0 \] ### Conclusion Thus, the value of the integral is: \[ \int_{0}^{\pi} e^{\cos^2 x} \cos^3((2n+1)x) \, dx = 0 \] ### Final Answer The answer is \( \boxed{0} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

Q.int_(0)^( pi)(e^(cos^(2)x)(cos^(3)(2n+1)xdx,n in I

The value of int_(0)^(pi)e^(cos^(2)x)cos^(5)3x dx is

For any integer n, the integral int_(0)^( pi)e^(cos^(2))cos^(3)(2n+1)xdx has the value

The value of int_(0)^( pi)e^(sin^(2)x)cos(2n+1)xdx=

The value of int_(0)^((pi)/(4))(e^((1)/(cos^(2)x))*sin x)/(cos^(3)x)dx equals (A) (e^(2)-e)/(2)(B)(e^(4)-1)/(4)(C)(e^(2)+e)/(4) (D) (e^(4)-1)/(2)

I=int_(0)^(2 pi)cos^(-1)(cos x)dx

For any integer n,the integral int_(0)^(3) e^(sin^(2)x)cos^(3)(2n+1)x" dx" has the value

int_(0)^((pi)/(2))sin(x)4cos(x)e^(2cos x+1)dx