Home
Class 12
MATHS
If int(a)^(b)(f(a+b-x))/(f(x)+f(a+b-x))d...

If `int_(a)^(b)(f(a+b-x))/(f(x)+f(a+b-x))dx=10`, then (a, b) can have the values

A

`a=20, b=40`

B

`a=-5, b=5`

C

`a=10, b=20`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the given integral and find the values of \(a\) and \(b\) such that the integral equals 10. Given: \[ \int_{a}^{b} \frac{f(a+b-x)}{f(x) + f(a+b-x)} \, dx = 10 \] ### Step 1: Use the property of definite integrals We can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a+b-x) \, dx \] This means we can rewrite our integral as: \[ \int_{a}^{b} \frac{f(a+b-x)}{f(x) + f(a+b-x)} \, dx = \int_{a}^{b} \frac{f(x)}{f(a+b-x) + f(x)} \, dx \] ### Step 2: Combine the two integrals Let: \[ I = \int_{a}^{b} \frac{f(a+b-x)}{f(x) + f(a+b-x)} \, dx \] Then, from the property, we have: \[ I = \int_{a}^{b} \frac{f(x)}{f(a+b-x) + f(x)} \, dx \] Adding these two equations gives: \[ 2I = \int_{a}^{b} \left( \frac{f(a+b-x)}{f(x) + f(a+b-x)} + \frac{f(x)}{f(a+b-x) + f(x)} \right) \, dx \] The sum of the fractions simplifies to 1: \[ 2I = \int_{a}^{b} 1 \, dx \] ### Step 3: Evaluate the integral The integral of 1 from \(a\) to \(b\) is simply: \[ \int_{a}^{b} 1 \, dx = b - a \] Thus, we have: \[ 2I = b - a \] Since we know \(I = 10\), we can substitute this into the equation: \[ 2 \times 10 = b - a \] This simplifies to: \[ b - a = 20 \] ### Step 4: Find possible values of \(a\) and \(b\) From the equation \(b - a = 20\), we can express \(b\) in terms of \(a\): \[ b = a + 20 \] Now we can check the provided options: 1. **Option 1:** \(a = 20\), \(b = 40\) \(b - a = 40 - 20 = 20\) (Correct) 2. **Option 2:** \(a = 5\), \(b = 5\) \(b - a = 5 - 5 = 0\) (Incorrect) 3. **Option 3:** \(a = 10\), \(b = 20\) \(b - a = 20 - 10 = 10\) (Incorrect) Thus, the only valid option is: \[ (a, b) = (20, 40) \] ### Final Answer: The values of \(a\) and \(b\) can be \( (20, 40) \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

If int_(a)^(b)(f(a+b-x))/(f(x)+f(a+b-x))dx=4 , then (a, b) can have the values

If int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10 , then

int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=

Prove that int_(a)^(b)(f(x))/(f(x)+f(a+b-x)) dx=(b-a)/(2) .

If int_(a)^(b)(f(x))/(f(a)+f(a+b-x))dx=10, then b=22,a=2( b) b=15,1=-5b=10,a=-10( d) b=10,a=-2

int_(a)^( Prove that: )(f(x))/(f(x)+f(a+b-x))dx=(b-a)/(2)

int _(a) ^(b) f (x) dx =

int_a^b[d/dx(f(x))]dx