Home
Class 12
MATHS
The value of int(0)^(oo) (dx)/((x^(2)+4)...

The value of `int_(0)^(oo) (dx)/((x^(2)+4)(x^(2)+9) )` is

A

`(pi)/(60)`

B

`(pi)/(20)`

C

`(pi)/(40)`

D

`(pi)/(80)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

int_ (0)^(oo) (x^(2) dx)/((x^(2)+a^(2)) (x^(2)+b^(2)) (x^(2) +c^(2))) = (pi)/(2 (a+b) (b+c) (c+a)), then value of int_ (0)^(oo) (dx)/((x ^(2) +4) (x^(2) +9)) is (i) (pi)/(60) (ii) (pi)/(20) (iii) (pi)/(40) (iv ) (pi)/(80)

int_(0)^(oo)(dx)/((x+r)^(3/2))

int_(0)^(oo)(dx)/((1+x^(2))^(4))=

The value of int_(0)^(oo)(logx)/(a^(2)+x^(2))dx is

The value of int_(0)^(oo) (logx)/(1+x^(2))dx , is

The value of int_(0)^(oo)(x)/((1+x)(x^(2)+1))dx is

The value of int_(0)^(oo) (dx)/(a^(2)+x^(2)) is equal to

int_(0)^(oo)(x)/(1+x^(4))dx=

int_(0)^(oo)(1)/(3+x^(2))dx