Home
Class 12
MATHS
If I(1)=int(0)^(pi//4)sin^(2)xdx and I(2...

If `I_(1)=int_(0)^(pi//4)sin^(2)xdx and I_(2)=int_(0)^(pi//4)cos^(2)xdx`, then

A

`I_(1)=I_(2)`

B

`I_(1) lt I_(2)`

C

`I_(1) gt I_(2)`

D

`I_(2)=I_(1)+pi//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) defined as: \[ I_1 = \int_{0}^{\frac{\pi}{4}} \sin^2 x \, dx \] \[ I_2 = \int_{0}^{\frac{\pi}{4}} \cos^2 x \, dx \] ### Step 1: Evaluate \( I_1 \) Using the identity \( \sin^2 x = \frac{1 - \cos(2x)}{2} \), we can rewrite \( I_1 \): \[ I_1 = \int_{0}^{\frac{\pi}{4}} \sin^2 x \, dx = \int_{0}^{\frac{\pi}{4}} \frac{1 - \cos(2x)}{2} \, dx \] ### Step 2: Simplify the Integral Now, we can separate the integral: \[ I_1 = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (1 - \cos(2x)) \, dx = \frac{1}{2} \left( \int_{0}^{\frac{\pi}{4}} 1 \, dx - \int_{0}^{\frac{\pi}{4}} \cos(2x) \, dx \right) \] ### Step 3: Evaluate Each Part 1. **Evaluate \( \int_{0}^{\frac{\pi}{4}} 1 \, dx \)**: \[ \int_{0}^{\frac{\pi}{4}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{4}} = \frac{\pi}{4} \] 2. **Evaluate \( \int_{0}^{\frac{\pi}{4}} \cos(2x) \, dx \)**: \[ \int \cos(2x) \, dx = \frac{1}{2} \sin(2x) \] Thus, \[ \int_{0}^{\frac{\pi}{4}} \cos(2x) \, dx = \left[ \frac{1}{2} \sin(2x) \right]_{0}^{\frac{\pi}{4}} = \frac{1}{2} \left( \sin\left(\frac{\pi}{2}\right) - \sin(0) \right) = \frac{1}{2}(1 - 0) = \frac{1}{2} \] ### Step 4: Combine Results for \( I_1 \) Substituting back into the equation for \( I_1 \): \[ I_1 = \frac{1}{2} \left( \frac{\pi}{4} - \frac{1}{2} \right) = \frac{\pi}{8} - \frac{1}{4} \] ### Step 5: Evaluate \( I_2 \) Using the identity \( \cos^2 x = \frac{1 + \cos(2x)}{2} \), we can rewrite \( I_2 \): \[ I_2 = \int_{0}^{\frac{\pi}{4}} \cos^2 x \, dx = \int_{0}^{\frac{\pi}{4}} \frac{1 + \cos(2x)}{2} \, dx \] ### Step 6: Simplify the Integral for \( I_2 \) Similar to \( I_1 \): \[ I_2 = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (1 + \cos(2x)) \, dx = \frac{1}{2} \left( \int_{0}^{\frac{\pi}{4}} 1 \, dx + \int_{0}^{\frac{\pi}{4}} \cos(2x) \, dx \right) \] ### Step 7: Evaluate Each Part for \( I_2 \) Using the results from \( I_1 \): 1. **Evaluate \( \int_{0}^{\frac{\pi}{4}} 1 \, dx \)**: \[ \int_{0}^{\frac{\pi}{4}} 1 \, dx = \frac{\pi}{4} \] 2. **Evaluate \( \int_{0}^{\frac{\pi}{4}} \cos(2x) \, dx \)**: \[ \int_{0}^{\frac{\pi}{4}} \cos(2x) \, dx = \frac{1}{2} \] ### Step 8: Combine Results for \( I_2 \) Substituting back into the equation for \( I_2 \): \[ I_2 = \frac{1}{2} \left( \frac{\pi}{4} + \frac{1}{2} \right) = \frac{\pi}{8} + \frac{1}{4} \] ### Step 9: Compare \( I_1 \) and \( I_2 \) Now we have: \[ I_1 = \frac{\pi}{8} - \frac{1}{4} \] \[ I_2 = \frac{\pi}{8} + \frac{1}{4} \] ### Conclusion Since \( I_2 \) is greater than \( I_1 \): \[ I_2 > I_1 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/4)sin^(4)xdx

int_(0)^(pi//2)sin^(2)xdx=?

int_(0)^( pi/4)sec^(2)xdx

int_(0)^( pi/2)cos^(6)xdx

int_(0)^( pi/2)cos^(3)xdx

int_(0)^( pi)sin^(2)xdx

"int_(0)^( pi)x sin^(2)xdx

"int_(0)^( pi/2)cos^(n)xdx

int_(0)^(2 pi)cos^(4)xdx

int_(0)^(2 pi)sin^(3)xdx