To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) defined as:
\[
I_1 = \int_{0}^{\frac{\pi}{4}} \sin^2 x \, dx
\]
\[
I_2 = \int_{0}^{\frac{\pi}{4}} \cos^2 x \, dx
\]
### Step 1: Evaluate \( I_1 \)
Using the identity \( \sin^2 x = \frac{1 - \cos(2x)}{2} \), we can rewrite \( I_1 \):
\[
I_1 = \int_{0}^{\frac{\pi}{4}} \sin^2 x \, dx = \int_{0}^{\frac{\pi}{4}} \frac{1 - \cos(2x)}{2} \, dx
\]
### Step 2: Simplify the Integral
Now, we can separate the integral:
\[
I_1 = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (1 - \cos(2x)) \, dx = \frac{1}{2} \left( \int_{0}^{\frac{\pi}{4}} 1 \, dx - \int_{0}^{\frac{\pi}{4}} \cos(2x) \, dx \right)
\]
### Step 3: Evaluate Each Part
1. **Evaluate \( \int_{0}^{\frac{\pi}{4}} 1 \, dx \)**:
\[
\int_{0}^{\frac{\pi}{4}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{4}} = \frac{\pi}{4}
\]
2. **Evaluate \( \int_{0}^{\frac{\pi}{4}} \cos(2x) \, dx \)**:
\[
\int \cos(2x) \, dx = \frac{1}{2} \sin(2x)
\]
Thus,
\[
\int_{0}^{\frac{\pi}{4}} \cos(2x) \, dx = \left[ \frac{1}{2} \sin(2x) \right]_{0}^{\frac{\pi}{4}} = \frac{1}{2} \left( \sin\left(\frac{\pi}{2}\right) - \sin(0) \right) = \frac{1}{2}(1 - 0) = \frac{1}{2}
\]
### Step 4: Combine Results for \( I_1 \)
Substituting back into the equation for \( I_1 \):
\[
I_1 = \frac{1}{2} \left( \frac{\pi}{4} - \frac{1}{2} \right) = \frac{\pi}{8} - \frac{1}{4}
\]
### Step 5: Evaluate \( I_2 \)
Using the identity \( \cos^2 x = \frac{1 + \cos(2x)}{2} \), we can rewrite \( I_2 \):
\[
I_2 = \int_{0}^{\frac{\pi}{4}} \cos^2 x \, dx = \int_{0}^{\frac{\pi}{4}} \frac{1 + \cos(2x)}{2} \, dx
\]
### Step 6: Simplify the Integral for \( I_2 \)
Similar to \( I_1 \):
\[
I_2 = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (1 + \cos(2x)) \, dx = \frac{1}{2} \left( \int_{0}^{\frac{\pi}{4}} 1 \, dx + \int_{0}^{\frac{\pi}{4}} \cos(2x) \, dx \right)
\]
### Step 7: Evaluate Each Part for \( I_2 \)
Using the results from \( I_1 \):
1. **Evaluate \( \int_{0}^{\frac{\pi}{4}} 1 \, dx \)**:
\[
\int_{0}^{\frac{\pi}{4}} 1 \, dx = \frac{\pi}{4}
\]
2. **Evaluate \( \int_{0}^{\frac{\pi}{4}} \cos(2x) \, dx \)**:
\[
\int_{0}^{\frac{\pi}{4}} \cos(2x) \, dx = \frac{1}{2}
\]
### Step 8: Combine Results for \( I_2 \)
Substituting back into the equation for \( I_2 \):
\[
I_2 = \frac{1}{2} \left( \frac{\pi}{4} + \frac{1}{2} \right) = \frac{\pi}{8} + \frac{1}{4}
\]
### Step 9: Compare \( I_1 \) and \( I_2 \)
Now we have:
\[
I_1 = \frac{\pi}{8} - \frac{1}{4}
\]
\[
I_2 = \frac{\pi}{8} + \frac{1}{4}
\]
### Conclusion
Since \( I_2 \) is greater than \( I_1 \):
\[
I_2 > I_1
\]