Home
Class 12
MATHS
int(-pi//4)^(pi//4)(e^(x)(x^(3)sinx))/(e...

`int_(-pi//4)^(pi//4)(e^(x)(x^(3)sinx))/(e^(2x)-1)dx` equals

A

0

B

1

C

`-1`

D

e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{e^x x^3 \sin x}{e^{2x} - 1} \, dx, \] we will check if the integrand is an odd function. An odd function \( f(x) \) satisfies the property \( f(-x) = -f(x) \). ### Step 1: Define the function Let \[ f(x) = \frac{e^x x^3 \sin x}{e^{2x} - 1}. \] ### Step 2: Evaluate \( f(-x) \) Now we calculate \( f(-x) \): \[ f(-x) = \frac{e^{-x} (-x)^3 \sin(-x)}{e^{2(-x)} - 1}. \] ### Step 3: Simplify \( f(-x) \) Using the properties of exponents and trigonometric functions, we have: \[ f(-x) = \frac{e^{-x} (-x^3)(-\sin x)}{e^{-2x} - 1} = \frac{e^{-x} x^3 \sin x}{e^{-2x} - 1}. \] ### Step 4: Rewrite the denominator The denominator can be rewritten as: \[ e^{-2x} - 1 = - (1 - e^{-2x}) = - (e^{-2x} - 1). \] Thus, \[ f(-x) = \frac{e^{-x} x^3 \sin x}{-(e^{2x} - 1)} = -\frac{e^{-x} x^3 \sin x}{e^{2x} - 1}. \] ### Step 5: Relate \( f(-x) \) to \( f(x) \) Now, we can express \( f(-x) \) in terms of \( f(x) \): \[ f(-x) = -\frac{e^{-x} x^3 \sin x}{e^{2x} - 1}. \] Notice that \( e^{-x} = \frac{1}{e^x} \), so we can write: \[ f(-x) = -f(x). \] ### Step 6: Conclude that \( f(x) \) is an odd function Since \( f(-x) = -f(x) \), we conclude that \( f(x) \) is an odd function. ### Step 7: Apply the property of definite integrals The integral of an odd function over a symmetric interval around zero is zero: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} f(x) \, dx = 0. \] ### Final Result Thus, the value of the integral is: \[ \boxed{0}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//4)^(pi//4)(e^(x)x sin x)/(e^(2x)-1)dx=

The value of int_(pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

The integral int_(-pi//2)^(pi//2)(e^(|sinx|).cosx)/(1+e^(tanx))dx equals

int_(-pi//4)^(pi//4) (e^x sec^2 dx)/(e^(2x)-1) is equal to (i)0 (ii)2 (iii)e (iv)none of these

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is

The value of the integral int_(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi//4)+1)dx is

The value of int_(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal to

int_(pi//4)^(pi//2)(e^(cot x))/(sin^(2)x)dx=

Evaluate: int_(-pi/4)^( pi/4)(sec^(2)x)/(1+e^(x))dx

int_(0)^(pi//4)e^( sinx)(((x cos^(3)x- sinx))/( cos^(2)x))dx