Home
Class 12
MATHS
If int(pi//6)^(pi//3)(sqrt(sinx))/(sqrt(...

If `int_(pi//6)^(pi//3)(sqrt(sinx))/(sqrt(cosx)+sqrt(sinx))dx=(k)/(4)`, then value of k equals

A

`(pi)/(12)`

B

`(pi)/(3)`

C

`(pi)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx, \] we can use the property of definite integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] ### Step 1: Apply the property of definite integrals Here, \( a = \frac{\pi}{6} \) and \( b = \frac{\pi}{3} \). Therefore, \( a + b = \frac{\pi}{6} + \frac{\pi}{3} = \frac{\pi}{6} + \frac{2\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2} \). Now, we can rewrite the integral: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin\left(\frac{\pi}{2} - x\right)}}{\sqrt{\cos\left(\frac{\pi}{2} - x\right)} + \sqrt{\sin\left(\frac{\pi}{2} - x\right)}} \, dx. \] ### Step 2: Simplify the integrand Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we can substitute: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx. \] ### Step 3: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx \) 2. \( I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx \) Adding these two equations gives: \[ 2I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left( \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} \right) \, dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 1 \, dx. \] ### Step 4: Evaluate the integral Now we can evaluate the integral: \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 1 \, dx = \left[ x \right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}. \] Thus, we have: \[ 2I = \frac{\pi}{6} \implies I = \frac{\pi}{12}. \] ### Step 5: Relate to \( k \) According to the problem statement, we have: \[ I = \frac{k}{4}. \] Substituting \( I = \frac{\pi}{12} \): \[ \frac{\pi}{12} = \frac{k}{4}. \] ### Step 6: Solve for \( k \) Multiplying both sides by 4 gives: \[ k = \frac{\pi}{12} \times 4 = \frac{\pi}{3}. \] ### Final Answer Thus, the value of \( k \) is \[ \boxed{\frac{\pi}{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

int_(pi//6)^(pi//3)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx=(k)/(4) , then the value of k equals

int_(0)^(pi//2)(sqrt(cosx))/((sqrt(cosx)+sqrt(sinx)))dx=?

int_(0)^(pi//2)(sqrt(sinx))/((sqrt(sinx)+sqrt(cosx)))dx=(pi)/(4)

int_0^(pi/2) sqrt(sinx)/(sqrt(sinx)+sqrt(cosx))dx

int_(0)^(pi//2)sqrt(1+sinx)dx

Evaluate int_0^(pi/2) sqrt(cosx)/(sqrt(cosx)+sqrt(sinx))dx

Evalaute int_(pi//6)^(pi//3)(sqrt((sinx))dx)/(sqrt((sinx))+sqrt((cosx)))

int(1)/(cosx.sqrt(sinx.cosx))dx=

int_((pi)/(18))^((4pi)/(9))(2sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx= . . .