Home
Class 12
MATHS
Let d/(dx) (F(x))= e^(sinx)/x, x>0. If ...

Let `d/(dx) (F(x))= e^(sinx)/x, x>0`. If `int_1^4 2e^sin(x^2)/x dx = F(k)-F(1)`, then possible value of k is:

A

16

B

8

C

0

D

`-16`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

Let (d)/(dx)(F(x))=(e^(sin x))/(x),x>0. If int_(1)^(4)2(e^(sin(x^(2))))/(x)dx=F(k)-F(1), then possible value of k is:

Let (d)/(dx)F(x)=((e^( sin x))/(x)),x>0. If int_(1)^(4)(3)/(x)e^(sin(x^(3)))dx=F(k)-F(1), then one of the possible values of k, is: (a)15 (b) 16(cc)63 (d) 64

int[(d)/(dx)f(x)]dx=

Let f:[2,5] rarr [2,5] be a bijective function such that d/(dx)f^-1(x)>0AA(x)in[2, 5] then int_2^5(f(x)+f^-1(x)) s dx is equal to 7k. then value of k is

if (d)/(dx)f(x)=g(x), find the value of int_(a)^(b)f(x)g(x)dx