Home
Class 12
MATHS
int(-pi)^(5pi)cot^(-1)(cotx)dx equals...

`int_(-pi)^(5pi)cot^(-1)(cotx)dx` equals

A

`int_(0)^(5pi)cot^(-1)cotxdx`

B

`int_(0)^(6pi)cot^(-1)cotxdx`

C

`3pi^(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int_{-\pi}^{5\pi} \cot^{-1}(\cot x) \, dx\), we can follow these steps: ### Step 1: Understand the function \(\cot^{-1}(\cot x)\) The function \(\cot^{-1}(\cot x)\) simplifies based on the properties of the cotangent and the inverse cotangent functions. The value of \(\cot^{-1}(\cot x)\) is defined as: - \(x\) if \(x \in (0, \pi)\) - \(x - \pi\) if \(x \in (\pi, 2\pi)\) - \(x - 2\pi\) if \(x \in (2\pi, 3\pi)\) - and so on... This means that \(\cot^{-1}(\cot x)\) is periodic with a period of \(\pi\) and takes values in the interval \((0, \pi)\). ### Step 2: Break the integral into intervals Given the periodicity of \(\cot^{-1}(\cot x)\), we can break the integral from \(-\pi\) to \(5\pi\) into smaller intervals of length \(\pi\): \[ \int_{-\pi}^{5\pi} \cot^{-1}(\cot x) \, dx = \int_{-\pi}^{0} \cot^{-1}(\cot x) \, dx + \int_{0}^{\pi} \cot^{-1}(\cot x) \, dx + \int_{\pi}^{2\pi} \cot^{-1}(\cot x) \, dx + \int_{2\pi}^{3\pi} \cot^{-1}(\cot x) \, dx + \int_{3\pi}^{4\pi} \cot^{-1}(\cot x) \, dx + \int_{4\pi}^{5\pi} \cot^{-1}(\cot x) \, dx \] ### Step 3: Evaluate each integral 1. **For \([- \pi, 0]\)**: - Here, \(\cot^{-1}(\cot x) = \pi + x\) since \(x\) is in the range \((- \pi, 0)\). - Thus, \(\int_{-\pi}^{0} \cot^{-1}(\cot x) \, dx = \int_{-\pi}^{0} (\pi + x) \, dx\). 2. **For \([0, \pi]\)**: - Here, \(\cot^{-1}(\cot x) = x\). - Thus, \(\int_{0}^{\pi} \cot^{-1}(\cot x) \, dx = \int_{0}^{\pi} x \, dx\). 3. **For \([\pi, 2\pi]\)**: - Here, \(\cot^{-1}(\cot x) = x - \pi\). - Thus, \(\int_{\pi}^{2\pi} \cot^{-1}(\cot x) \, dx = \int_{\pi}^{2\pi} (x - \pi) \, dx\). 4. **For \([2\pi, 3\pi]\)**: - Here, \(\cot^{-1}(\cot x) = x - 2\pi\). - Thus, \(\int_{2\pi}^{3\pi} \cot^{-1}(\cot x) \, dx = \int_{2\pi}^{3\pi} (x - 2\pi) \, dx\). 5. **For \([3\pi, 4\pi]\)**: - Here, \(\cot^{-1}(\cot x) = x - 3\pi\). - Thus, \(\int_{3\pi}^{4\pi} \cot^{-1}(\cot x) \, dx = \int_{3\pi}^{4\pi} (x - 3\pi) \, dx\). 6. **For \([4\pi, 5\pi]\)**: - Here, \(\cot^{-1}(\cot x) = x - 4\pi\). - Thus, \(\int_{4\pi}^{5\pi} \cot^{-1}(\cot x) \, dx = \int_{4\pi}^{5\pi} (x - 4\pi) \, dx\). ### Step 4: Calculate each integral 1. \(\int_{-\pi}^{0} (\pi + x) \, dx = \left[ \pi x + \frac{x^2}{2} \right]_{-\pi}^{0} = \left(0 - \left(-\pi^2 + \frac{\pi^2}{2}\right)\right) = \frac{\pi^2}{2}\) 2. \(\int_{0}^{\pi} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{\pi} = \frac{\pi^2}{2}\) 3. \(\int_{\pi}^{2\pi} (x - \pi) \, dx = \left[ \frac{x^2}{2} - \pi x \right]_{\pi}^{2\pi} = \left(\frac{(2\pi)^2}{2} - 2\pi^2\right) - \left(\frac{\pi^2}{2} - \pi^2\right) = \frac{\pi^2}{2}\) 4. \(\int_{2\pi}^{3\pi} (x - 2\pi) \, dx = \frac{\pi^2}{2}\) 5. \(\int_{3\pi}^{4\pi} (x - 3\pi) \, dx = \frac{\pi^2}{2}\) 6. \(\int_{4\pi}^{5\pi} (x - 4\pi) \, dx = \frac{\pi^2}{2}\) ### Step 5: Sum all the integrals Now, we can sum all the results: \[ \int_{-\pi}^{5\pi} \cot^{-1}(\cot x) \, dx = \frac{\pi^2}{2} + \frac{\pi^2}{2} + \frac{\pi^2}{2} + \frac{\pi^2}{2} + \frac{\pi^2}{2} + \frac{\pi^2}{2} = 6 \cdot \frac{\pi^2}{2} = 3\pi^2 \] ### Final Result Thus, the value of the integral is: \[ \int_{-\pi}^{5\pi} \cot^{-1}(\cot x) \, dx = 3\pi^2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(10 pi)cot^(-1)(cos t)dx

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(-2 pi)^(5 pi)cot^(-1)(tan x)dx is equal to (7 pi)/(2)(b)(7 pi^(2))/(2)(c)(3 pi)/(2) (d) None of these

If I=int_(-2pi)^(5pi) cot^-1(tanx)dx . Then, 2I/pi^2 is ….

STATEMENT-1 : int_(-2pi)^(5pi)cot^(-1)(tanx)dx=7(pi^(2))/(2) and STATEMENT-2 : int_(a)^(b)f(x)dx=int_(a)^(c )f(x)dx+int_(c )^(b)f(x)dx , a lt c lt b

int_(pi//4)^(pi//2)cot^(2)x dx =

int_-pi^(3pi) cot^-1(cotx)dx= (A) pi^2 (B) 2pi^2 (C) 3pi^2 (D) none of these

Prove that int_(-(pi)/(2))^(2 pi)[cot^(-1)x]dx, where [.] denotes the greatest integer function.

int_(0)^( pi/2)(dx)/(1+cot x)