Home
Class 12
MATHS
The value of the integral int(-4)^(4)[ta...

The value of the integral `int_(-4)^(4)[tan^(-1)((x)/(x^(4)+1))+tan^(-1)((x^(4)+1)/(x))]dx` equals

A

`2pi`

B

`3pi`

C

`4pi`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-4}^{4} \left[ \tan^{-1}\left(\frac{x}{x^4 + 1}\right) + \tan^{-1}\left(\frac{x^4 + 1}{x}\right) \right] dx, \] we will use properties of inverse trigonometric functions. ### Step 1: Use the property of inverse trigonometric functions We know that \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right) = \frac{\pi}{2} \quad \text{(for } x > 0\text{)}. \] Thus, we can rewrite the integral as: \[ I = \int_{-4}^{4} \left[ \tan^{-1}\left(\frac{x}{x^4 + 1}\right) + \tan^{-1}\left(\frac{x^4 + 1}{x}\right) \right] dx = \int_{-4}^{4} \frac{\pi}{2} dx. \] ### Step 2: Simplify the integral Now, we can simplify the integral: \[ I = \frac{\pi}{2} \int_{-4}^{4} dx. \] ### Step 3: Calculate the definite integral The integral of \(dx\) from \(-4\) to \(4\) is: \[ \int_{-4}^{4} dx = [x]_{-4}^{4} = 4 - (-4) = 8. \] ### Step 4: Substitute back into the equation Now substituting this back into our expression for \(I\): \[ I = \frac{\pi}{2} \cdot 8 = 4\pi. \] ### Final Answer Thus, the value of the integral is \[ \boxed{4\pi}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

The vlaue of the integral int_(-1)^(3) ("tan"^(1)(x)/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/(x))dx is equal to

The value of the integral int_(0)^(oo)(1)/(1+x^(4))dx is

The value of the integral int_(1//3)^(1)((x-x^(3))^(1//3))/(x^(4))dx is

The value of the integral int(1+x^(2))/(1+x^(4))dx is equal to

The integral int(dx)/((x^(4)-1)^((1)/(4))) equal:

int x(e^(tan^(-1)x^(2)))/(x^(4)+1)dx equals

int(x tan^(-1)x^(2))/(1+x^(4))dx

If tan^(-1)((x-3)/(x-4))+tan^(-1)((x+3)/(x+4))=(pi)/(4)