Home
Class 12
MATHS
int(0)^(2pi)log((a+bsecx)/(a-bsecx))dx e...

`int_(0)^(2pi)log((a+bsecx)/(a-bsecx))dx` equals

A

`(pi(a+b))/(a-b)`

B

`(pi)/(2)`

C

`(pi)/(2)(a^(2)-b^(2))`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_0^{2\pi} \log\left(\frac{a + b \sec x}{a - b \sec x}\right) dx, \] we will follow these steps: ### Step 1: Define the Integral Let \[ I = \int_0^{2\pi} \log\left(\frac{a + b \sec x}{a - b \sec x}\right) dx. \] ### Step 2: Check for Symmetry We will check if the function is even by evaluating \(I\) at \(x\) and \(-x\): \[ f(-x) = \log\left(\frac{a + b \sec(-x)}{a - b \sec(-x)}\right) = \log\left(\frac{a + b \sec x}{a - b \sec x}\right) = f(x). \] Since \(f(-x) = f(x)\), the function is even. ### Step 3: Use the Property of Even Functions For an even function over the interval \([0, 2\pi]\), we can simplify the integral: \[ I = 2 \int_0^{\pi} \log\left(\frac{a + b \sec x}{a - b \sec x}\right) dx. \] ### Step 4: Change of Variables Now, we will use the substitution \(x = \pi - t\): \[ dx = -dt. \] The limits change as follows: - When \(x = 0\), \(t = \pi\). - When \(x = \pi\), \(t = 0\). Thus, we have: \[ I = 2 \int_{\pi}^{0} \log\left(\frac{a + b \sec(\pi - t)}{a - b \sec(\pi - t)}\right)(-dt) = 2 \int_0^{\pi} \log\left(\frac{a - b \sec t}{a + b \sec t}\right) dt. \] ### Step 5: Combine the Integrals Now we have two expressions for \(I\): 1. \(I = 2 \int_0^{\pi} \log\left(\frac{a + b \sec x}{a - b \sec x}\right) dx\) 2. \(I = 2 \int_0^{\pi} \log\left(\frac{a - b \sec x}{a + b \sec x}\right) dx\) Adding these two equations: \[ 2I = 2 \int_0^{\pi} \left(\log\left(\frac{a + b \sec x}{a - b \sec x}\right) + \log\left(\frac{a - b \sec x}{a + b \sec x}\right)\right) dx. \] Using the property of logarithms, we combine the logs: \[ \log\left(\frac{(a + b \sec x)(a - b \sec x)}{(a - b \sec x)(a + b \sec x)}\right) = \log(1) = 0. \] ### Step 6: Evaluate the Integral Thus, we have: \[ 2I = 2 \int_0^{\pi} 0 \, dx = 0. \] This implies: \[ I = 0. \] ### Final Result The value of the integral is \[ \int_0^{2\pi} \log\left(\frac{a + b \sec x}{a - b \sec x}\right) dx = 0. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)log (sec x) dx=

int_(0)^( pi)log(1+cos x)dx

What is int_(0)^(pi) log (tan""(x)/(2)) dx equal to?

int_(0)^(pi) x log sinx\ dx

int_(0)^((pi)/(2))log(tan x)*dx

int_(0)^(pi)log sin^(2)x dx=

int_(0)^((pi)/(2))log(sin2x)dx

int_(0)^((pi)/(2))log(sin x)dx

int_0^(pi//2)log(tanx)dx

int_(0)^(pi//2) log (tan x ) dx=