Home
Class 12
MATHS
int(0)^(sqrt3)(xtan^(-1)x)/((1+x^(2))^(3...

`int_(0)^(sqrt3)(xtan^(-1)x)/((1+x^(2))^(3//2))dx`

A

`(4-pi)/(4sqrt3)`

B

`(pi-4)/(4sqrt2)`

C

`(3sqrt3-pi)/(6)`

D

`(4sqrt2)/(4-pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\sqrt{3}} \frac{x \tan^{-1}(x)}{(1+x^2)^{3/2}} \, dx, \] we will use the substitution \( x = \tan(\theta) \). This gives us: 1. **Substitution**: - When \( x = 0 \), \( \theta = \tan^{-1}(0) = 0 \). - When \( x = \sqrt{3} \), \( \theta = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \). - The differential \( dx = \sec^2(\theta) \, d\theta \). - We also have \( 1 + x^2 = 1 + \tan^2(\theta) = \sec^2(\theta) \). Thus, the integral transforms as follows: \[ I = \int_{0}^{\frac{\pi}{3}} \frac{\tan(\theta) \theta \sec^2(\theta)}{(\sec^2(\theta))^{3/2}} \, d\theta. \] 2. **Simplifying the Integral**: - The term \( (\sec^2(\theta))^{3/2} = \sec^3(\theta) \). - Therefore, we can simplify the integral: \[ I = \int_{0}^{\frac{\pi}{3}} \frac{\tan(\theta) \theta \sec^2(\theta)}{\sec^3(\theta)} \, d\theta = \int_{0}^{\frac{\pi}{3}} \theta \tan(\theta) \cos(\theta) \, d\theta. \] 3. **Using the Identity**: - We know that \( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \). - Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{3}} \theta \sin(\theta) \, d\theta. \] 4. **Integration by Parts**: - Let \( u = \theta \) and \( dv = \sin(\theta) \, d\theta \). - Then \( du = d\theta \) and \( v = -\cos(\theta) \). - Applying integration by parts: \[ I = -\theta \cos(\theta) \bigg|_{0}^{\frac{\pi}{3}} + \int_{0}^{\frac{\pi}{3}} \cos(\theta) \, d\theta. \] 5. **Evaluating the Boundaries**: - The first term evaluates to: \[ -\left( \frac{\pi}{3} \cdot \cos\left(\frac{\pi}{3}\right) - 0 \cdot \cos(0) \right) = -\left( \frac{\pi}{3} \cdot \frac{1}{2} \right) = -\frac{\pi}{6}. \] 6. **Evaluating the Remaining Integral**: - The integral of \( \cos(\theta) \): \[ \int_{0}^{\frac{\pi}{3}} \cos(\theta) \, d\theta = \sin(\theta) \bigg|_{0}^{\frac{\pi}{3}} = \sin\left(\frac{\pi}{3}\right) - \sin(0) = \frac{\sqrt{3}}{2} - 0 = \frac{\sqrt{3}}{2}. \] 7. **Combining Results**: - Therefore, we have: \[ I = -\frac{\pi}{6} + \frac{\sqrt{3}}{2}. \] 8. **Final Result**: - To combine these, we can find a common denominator: \[ I = -\frac{\pi}{6} + \frac{3\sqrt{3}}{6} = \frac{3\sqrt{3} - \pi}{6}. \] Thus, the final answer is: \[ \boxed{\frac{3\sqrt{3} - \pi}{6}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1//sqrt(2))(sin^(-1)x)/((1-x^(2))^(3//2))dx=?

Evaluate the following : int_(0)^(11//sqrt2)(sin^(-1)x)/((1-x^(2))^(3//2))dx.

int_(0)^(sqrt(3))tan^(-1)((2x)/(1-x^(2)))dx

int(xtan^-1x)/(1+x^2)^(3/2)dx

Evaluate :int_(0)^(sqrt(3))(sin^(-1)(2x))/(1+x^(2))dx

int(xtan^(-1)x^(2))/((1+x^(4)))dx