Home
Class 12
MATHS
The sum of the series (1)/(1xx2)""^(25)C...

The sum of the series `(1)/(1xx2)""^(25)C_(0)+(1)/(2xx3)""^(25)C_(1)+(1)/(3xx4)""^(25)C_(2)+…+(1)/(26xx27)""^(25)C_(25)` is

A

`(2^(27)-1)/(26xx27)`

B

`(2^(27)-28)/(26xx27)`

C

`(2^(26)-1)/(52)`

D

`(1)/(2)((2^(26)+1)/(26xx27))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ S = \sum_{k=0}^{25} \frac{1}{(k+1)(k+2)} \binom{25}{k} \] we can start by rewriting the term \(\frac{1}{(k+1)(k+2)}\) in a more manageable form. Notice that: \[ \frac{1}{(k+1)(k+2)} = \frac{1}{k+1} - \frac{1}{k+2} \] This allows us to rewrite the series \(S\) as: \[ S = \sum_{k=0}^{25} \left( \frac{1}{k+1} - \frac{1}{k+2} \right) \binom{25}{k} \] Now, we can split the sum into two separate sums: \[ S = \sum_{k=0}^{25} \frac{1}{k+1} \binom{25}{k} - \sum_{k=0}^{25} \frac{1}{k+2} \binom{25}{k} \] Next, we can simplify each of these sums. The first sum can be simplified using the identity: \[ \sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k} = \frac{1}{n+1} \sum_{k=0}^{n} \binom{n+1}{k+1} = \frac{1}{n+1} \cdot 2^{n+1} \] For \(n = 25\): \[ \sum_{k=0}^{25} \frac{1}{k+1} \binom{25}{k} = \frac{1}{26} \cdot 2^{26} \] The second sum can be simplified similarly: \[ \sum_{k=0}^{25} \frac{1}{k+2} \binom{25}{k} = \frac{1}{27} \cdot 2^{26} \] Now substituting these results back into our expression for \(S\): \[ S = \frac{1}{26} \cdot 2^{26} - \frac{1}{27} \cdot 2^{26} \] Factoring out \(2^{26}\): \[ S = 2^{26} \left( \frac{1}{26} - \frac{1}{27} \right) \] Calculating the expression inside the parentheses: \[ \frac{1}{26} - \frac{1}{27} = \frac{27 - 26}{26 \cdot 27} = \frac{1}{26 \cdot 27} \] Thus, we have: \[ S = 2^{26} \cdot \frac{1}{26 \cdot 27} = \frac{2^{26}}{26 \cdot 27} \] Finally, we can express the final answer: \[ S = \frac{2^{26}}{702} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

The successor of 0xx(-25) is 1xx(-25)

The coefficient of x^(24) in ((25C_(1))/(25C_(0))-x)(x-2^(2)(25C_(2))/(25C_(1))(x-3^(2)(25C_(3))/(25C_(2)))(x-4^(2)(25C_(4))/(25C_(3)))......,(x-25^(2)(25C_(25))/(25C_(24))) is equal to 2925

The value of cot(sum_(n=1)^(2)cot^(-1)(1+sum_(k=1)^(n)2k)) is (a) (23)/(25) (b) (25)/(23) (c) (23)/(24) (d) (25)/(26)

1.0xx10^(-8)((5*0)/(25))^(2)

((3)^(-5)xx5^(-2)xx27^(2/3))/(6^2xx25^(1/2)xx49^(-1/2))

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

Simplify: ((6.25)^((1)/(2))xx(0.0144)^((1)/(2))+1)/((0.027)^((1)/(3))xx(81)^((1)/(4)))

MTG-WBJEE-DEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. The value of the integral int(-1)^(1){(x^(2013))/(e^(|x|)(x^(2)+cosx))...

    Text Solution

    |

  2. The value of I=int(0)^(pi//4)(tan^(*n+1)x)dx+(1)/(2)int(0)^(pi//2)tan^...

    Text Solution

    |

  3. The sum of the series (1)/(1xx2)""^(25)C(0)+(1)/(2xx3)""^(25)C(1)+(1)/...

    Text Solution

    |

  4. The value of the integral int(1)^(2)e^(x)(log(e)x+(x+1)/(x))dx is

    Text Solution

    |

  5. The value of lim(x->0) ( int0 ^ (x^2) cost^2 dt)/( xsin x) is

    Text Solution

    |

  6. 2*^nC0+2^2*(.^nC1)/2+2^3*(.^nC2)/3+...+2^(n+1)*(.^nCn)/(n+1)=

    Text Solution

    |

  7. If f(x)={{:(2x^(2)+1",",xle1),(4x^(3)-1",",xgt1):}, then int(0)^(2)f(x...

    Text Solution

    |

  8. If I=int(0)^(2)e^(x^(4))(x-alpha)dx=0, then alpha lies in the interval

    Text Solution

    |

  9. The value of lim(xrarr2)int(2)^(x)(3t^(2))/(x-2)dt is

    Text Solution

    |

  10. Let f(x) denote the fractional part of a real number x. Then the value...

    Text Solution

    |

  11. Let f: RvecR be a continuous function which satisfies f(x)= int0^xf(t...

    Text Solution

    |

  12. lim(nrarroo)(sqrt1+sqrt2+…+sqrt(n-1))/(nsqrtn)=

    Text Solution

    |

  13. int0^1log(1/x-1)dx is equal to

    Text Solution

    |

  14. Estimate the absolute value of the integral int(10)^(19)(sinx)/(1+x^8)...

    Text Solution

    |

  15. L e tI1=int0^n[x]dxandI2=int0^n{x}dx ,where [x] and {x} are integral a...

    Text Solution

    |

  16. The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in...

    Text Solution

    |

  17. int0^1000 e^(x-[x])dx

    Text Solution

    |

  18. If M=int(0)^((pi)/2)(cosx)/(x+2)dx and N=int(0)^((pi)/4)(sinxcosx)/((x...

    Text Solution

    |

  19. The value of the integral I = int(1//2014)^(2014)(tan^(-1) x)/x dx is

    Text Solution

    |

  20. Let I=int(pi//4)^(pi//3)(sinx)/(x)dx. Then

    Text Solution

    |