Home
Class 12
MATHS
The value of the integral int(1)^(2)e^(...

The value of the integral `int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx` is

A

`e^(2)(1+log_(e)2)`

B

`e^(2)-e`

C

`e^(2)(1+log_(e)2)-e`

D

`e^(2)-e(1+log_(e)2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{1}^{2} e^x \left( \log_e x + \frac{x+1}{x} \right) dx, \] we can break it down step-by-step. ### Step 1: Simplify the integrand We can rewrite the integrand: \[ \frac{x + 1}{x} = 1 + \frac{1}{x}. \] Thus, the integral becomes: \[ I = \int_{1}^{2} e^x \left( \log_e x + 1 + \frac{1}{x} \right) dx. \] ### Step 2: Split the integral We can split the integral into three parts: \[ I = \int_{1}^{2} e^x \log_e x \, dx + \int_{1}^{2} e^x \, dx + \int_{1}^{2} e^x \frac{1}{x} \, dx. \] ### Step 3: Evaluate the second integral The second integral is straightforward: \[ \int_{1}^{2} e^x \, dx = \left[ e^x \right]_{1}^{2} = e^2 - e. \] ### Step 4: Evaluate the first integral using integration by parts For the first integral, we will use integration by parts. Let: - \( u = \log_e x \) \(\Rightarrow du = \frac{1}{x} dx\) - \( dv = e^x dx \) \(\Rightarrow v = e^x\) Using integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we have: \[ \int e^x \log_e x \, dx = e^x \log_e x - \int e^x \cdot \frac{1}{x} \, dx. \] ### Step 5: Substitute back into the integral Now substituting back into the integral \( I \): \[ I = \left[ e^x \log_e x \right]_{1}^{2} - \int_{1}^{2} e^x \frac{1}{x} \, dx + (e^2 - e). \] ### Step 6: Evaluate the boundary terms Now we evaluate the boundary terms: \[ \left[ e^x \log_e x \right]_{1}^{2} = e^2 \log_e 2 - e^1 \log_e 1 = e^2 \log_e 2 - 0 = e^2 \log_e 2. \] ### Step 7: Combine all parts Now we have: \[ I = e^2 \log_e 2 - \int_{1}^{2} e^x \frac{1}{x} \, dx + (e^2 - e). \] ### Step 8: Recognize the integral Notice that the integral \( \int_{1}^{2} e^x \frac{1}{x} \, dx \) is the same as the term we derived from integration by parts. Thus, we can simplify: \[ I = e^2 \log_e 2 + e^2 - e - \int_{1}^{2} e^x \frac{1}{x} \, dx. \] ### Step 9: Final evaluation Combining all the terms, we get: \[ I = e^2 (1 + \log_e 2) - e. \] ### Final Answer Thus, the value of the integral is: \[ I = e^2 (1 + \log_e 2) - e. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(e^(-1))^(e^(2)) |(log_(e)x)/(x)|dx is

The value of the integral int_(-1)^(1)log_(e)(sqrt(1-x)+sqrt(1+x))dx is equal to :

int_(1)^(e)(e^(x)(x log_(e)x+1))/(x)dx is equal to

The value of the integral int _(e ^(-1))^(e ^(2))|(ln x )/(x)|dx is:

The value of integral int_(1)^(e) (log x)^(3)dx , is

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral int(dx)/((e^(x)+e^(-x))^2) is

The value of the integral int_(-1//2)^(1//2) cos x log((1+x)/(1-x))dx , is

int_(1)^(x)log_(e)[x]dx

MTG-WBJEE-DEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. The value of I=int(0)^(pi//4)(tan^(*n+1)x)dx+(1)/(2)int(0)^(pi//2)tan^...

    Text Solution

    |

  2. The sum of the series (1)/(1xx2)""^(25)C(0)+(1)/(2xx3)""^(25)C(1)+(1)/...

    Text Solution

    |

  3. The value of the integral int(1)^(2)e^(x)(log(e)x+(x+1)/(x))dx is

    Text Solution

    |

  4. The value of lim(x->0) ( int0 ^ (x^2) cost^2 dt)/( xsin x) is

    Text Solution

    |

  5. 2*^nC0+2^2*(.^nC1)/2+2^3*(.^nC2)/3+...+2^(n+1)*(.^nCn)/(n+1)=

    Text Solution

    |

  6. If f(x)={{:(2x^(2)+1",",xle1),(4x^(3)-1",",xgt1):}, then int(0)^(2)f(x...

    Text Solution

    |

  7. If I=int(0)^(2)e^(x^(4))(x-alpha)dx=0, then alpha lies in the interval

    Text Solution

    |

  8. The value of lim(xrarr2)int(2)^(x)(3t^(2))/(x-2)dt is

    Text Solution

    |

  9. Let f(x) denote the fractional part of a real number x. Then the value...

    Text Solution

    |

  10. Let f: RvecR be a continuous function which satisfies f(x)= int0^xf(t...

    Text Solution

    |

  11. lim(nrarroo)(sqrt1+sqrt2+…+sqrt(n-1))/(nsqrtn)=

    Text Solution

    |

  12. int0^1log(1/x-1)dx is equal to

    Text Solution

    |

  13. Estimate the absolute value of the integral int(10)^(19)(sinx)/(1+x^8)...

    Text Solution

    |

  14. L e tI1=int0^n[x]dxandI2=int0^n{x}dx ,where [x] and {x} are integral a...

    Text Solution

    |

  15. The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in...

    Text Solution

    |

  16. int0^1000 e^(x-[x])dx

    Text Solution

    |

  17. If M=int(0)^((pi)/2)(cosx)/(x+2)dx and N=int(0)^((pi)/4)(sinxcosx)/((x...

    Text Solution

    |

  18. The value of the integral I = int(1//2014)^(2014)(tan^(-1) x)/x dx is

    Text Solution

    |

  19. Let I=int(pi//4)^(pi//3)(sinx)/(x)dx. Then

    Text Solution

    |

  20. The value of I=int(pi//2)^(5pi//2)(e^(tan^(-1)(sinx)))/(e^(tan^(-1)(si...

    Text Solution

    |