Home
Class 12
MATHS
If f(x)={{:(2x^(2)+1",",xle1),(4x^(3)-1"...

If `f(x)={{:(2x^(2)+1",",xle1),(4x^(3)-1",",xgt1):}`, then `int_(0)^(2)f(x)dx` is

A

`47//3`

B

`50//3`

C

`1//3`

D

`47//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the definite integral of the piecewise function \( f(x) \) from 0 to 2. The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} 2x^2 + 1 & \text{if } x \leq 1 \\ 4x^3 - 1 & \text{if } x > 1 \end{cases} \] We will break the integral into two parts based on the definition of the function: \[ \int_0^2 f(x) \, dx = \int_0^1 f(x) \, dx + \int_1^2 f(x) \, dx \] ### Step 1: Evaluate \( \int_0^1 f(x) \, dx \) For \( x \) in the interval \([0, 1]\), we have: \[ f(x) = 2x^2 + 1 \] Thus, we can write: \[ \int_0^1 f(x) \, dx = \int_0^1 (2x^2 + 1) \, dx \] ### Step 2: Integrate \( 2x^2 + 1 \) Now, we calculate the integral: \[ \int (2x^2 + 1) \, dx = \int 2x^2 \, dx + \int 1 \, dx \] Calculating each part: 1. \( \int 2x^2 \, dx = \frac{2}{3} x^3 \) 2. \( \int 1 \, dx = x \) Putting it together: \[ \int (2x^2 + 1) \, dx = \frac{2}{3} x^3 + x \] ### Step 3: Evaluate from 0 to 1 Now we evaluate from 0 to 1: \[ \left[ \frac{2}{3} x^3 + x \right]_0^1 = \left( \frac{2}{3} (1)^3 + (1) \right) - \left( \frac{2}{3} (0)^3 + (0) \right) \] Calculating this gives: \[ = \left( \frac{2}{3} + 1 \right) - 0 = \frac{2}{3} + \frac{3}{3} = \frac{5}{3} \] ### Step 4: Evaluate \( \int_1^2 f(x) \, dx \) For \( x \) in the interval \([1, 2]\), we have: \[ f(x) = 4x^3 - 1 \] Thus, we can write: \[ \int_1^2 f(x) \, dx = \int_1^2 (4x^3 - 1) \, dx \] ### Step 5: Integrate \( 4x^3 - 1 \) Now, we calculate the integral: \[ \int (4x^3 - 1) \, dx = \int 4x^3 \, dx - \int 1 \, dx \] Calculating each part: 1. \( \int 4x^3 \, dx = x^4 \) 2. \( \int 1 \, dx = x \) Putting it together: \[ \int (4x^3 - 1) \, dx = x^4 - x \] ### Step 6: Evaluate from 1 to 2 Now we evaluate from 1 to 2: \[ \left[ x^4 - x \right]_1^2 = \left( (2)^4 - (2) \right) - \left( (1)^4 - (1) \right) \] Calculating this gives: \[ = (16 - 2) - (1 - 1) = 14 - 0 = 14 \] ### Step 7: Combine the results Now we combine the results from both integrals: \[ \int_0^2 f(x) \, dx = \int_0^1 f(x) \, dx + \int_1^2 f(x) \, dx = \frac{5}{3} + 14 \] To add these, we convert 14 into a fraction: \[ 14 = \frac{42}{3} \] Now we can add: \[ \int_0^2 f(x) \, dx = \frac{5}{3} + \frac{42}{3} = \frac{47}{3} \] ### Final Answer Thus, the value of the integral \( \int_0^2 f(x) \, dx \) is: \[ \boxed{\frac{47}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

Let f(x)={:{(x^(2)-1",",xle1),(-x^(2)-1",",xgt1.):} "Find"lim_(xrarr1)f(x).

if f(x) = {{:(x+2",",xle1),(cx^(2)",",xgt-1):}, then find c when lim(xto-1)f(x) exists.

Let f(x)={{:(1+x^(2)",",0lexle1),(2-x",",xgt1.):} Show that lim_(xrarr0)f(x) does not exist.

f(x) = {(1-2x", for " x le0),(1+2x", for "xgt0):} then int_(-1) ^(1) f(x) dx=

If : x(x^(4)+1).f(x)=1 , then : int_(1)^(2)f(x)dx=

Dicuss the continuity of the function: f(x)={{:(1+x^(2)", "0lexle1),(2-x", "xgt1):} at x = 1.

MTG-WBJEE-DEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. The value of lim(x->0) ( int0 ^ (x^2) cost^2 dt)/( xsin x) is

    Text Solution

    |

  2. 2*^nC0+2^2*(.^nC1)/2+2^3*(.^nC2)/3+...+2^(n+1)*(.^nCn)/(n+1)=

    Text Solution

    |

  3. If f(x)={{:(2x^(2)+1",",xle1),(4x^(3)-1",",xgt1):}, then int(0)^(2)f(x...

    Text Solution

    |

  4. If I=int(0)^(2)e^(x^(4))(x-alpha)dx=0, then alpha lies in the interval

    Text Solution

    |

  5. The value of lim(xrarr2)int(2)^(x)(3t^(2))/(x-2)dt is

    Text Solution

    |

  6. Let f(x) denote the fractional part of a real number x. Then the value...

    Text Solution

    |

  7. Let f: RvecR be a continuous function which satisfies f(x)= int0^xf(t...

    Text Solution

    |

  8. lim(nrarroo)(sqrt1+sqrt2+…+sqrt(n-1))/(nsqrtn)=

    Text Solution

    |

  9. int0^1log(1/x-1)dx is equal to

    Text Solution

    |

  10. Estimate the absolute value of the integral int(10)^(19)(sinx)/(1+x^8)...

    Text Solution

    |

  11. L e tI1=int0^n[x]dxandI2=int0^n{x}dx ,where [x] and {x} are integral a...

    Text Solution

    |

  12. The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in...

    Text Solution

    |

  13. int0^1000 e^(x-[x])dx

    Text Solution

    |

  14. If M=int(0)^((pi)/2)(cosx)/(x+2)dx and N=int(0)^((pi)/4)(sinxcosx)/((x...

    Text Solution

    |

  15. The value of the integral I = int(1//2014)^(2014)(tan^(-1) x)/x dx is

    Text Solution

    |

  16. Let I=int(pi//4)^(pi//3)(sinx)/(x)dx. Then

    Text Solution

    |

  17. The value of I=int(pi//2)^(5pi//2)(e^(tan^(-1)(sinx)))/(e^(tan^(-1)(si...

    Text Solution

    |

  18. The value of lim(nrarroo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n...

    Text Solution

    |

  19. The value of the integratio int(-pi//4)^(pi//4)(lambda|sinx|+(mu sinx)...

    Text Solution

    |

  20. lim(x->0) 1/x [int(y->a)e^(sin^2t) dt-int(x+y->a)e^(sin^2t)dt] is equa...

    Text Solution

    |