Home
Class 12
MATHS
The value of lim(xrarr2)int(2)^(x)(3t^(2...

The value of `lim_(xrarr2)int_(2)^(x)(3t^(2))/(x-2)dt` is

A

10

B

12

C

8

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 2} \int_{2}^{x} \frac{3t^2}{x-2} dt \), we will follow these steps: ### Step 1: Set up the integral We start with the expression: \[ \lim_{x \to 2} \int_{2}^{x} \frac{3t^2}{x-2} dt \] ### Step 2: Integrate the function Since the integrand is \( \frac{3t^2}{x-2} \), we can factor out \( \frac{1}{x-2} \) from the integral: \[ \lim_{x \to 2} \frac{1}{x-2} \int_{2}^{x} 3t^2 dt \] ### Step 3: Compute the definite integral Now we compute the integral \( \int_{2}^{x} 3t^2 dt \): \[ \int 3t^2 dt = t^3 + C \] Thus, \[ \int_{2}^{x} 3t^2 dt = [t^3]_{2}^{x} = x^3 - 2^3 = x^3 - 8 \] ### Step 4: Substitute back into the limit Now substituting back, we have: \[ \lim_{x \to 2} \frac{x^3 - 8}{x-2} \] ### Step 5: Factor the numerator Notice that \( x^3 - 8 \) can be factored using the difference of cubes: \[ x^3 - 8 = (x - 2)(x^2 + 2x + 4) \] Thus, we can rewrite the limit as: \[ \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{x - 2} \] ### Step 6: Cancel the common terms We can cancel \( (x - 2) \) from the numerator and denominator (as long as \( x \neq 2 \)): \[ \lim_{x \to 2} (x^2 + 2x + 4) \] ### Step 7: Evaluate the limit Now we can directly substitute \( x = 2 \): \[ 2^2 + 2(2) + 4 = 4 + 4 + 4 = 12 \] ### Final Answer Thus, the value of the limit is: \[ \boxed{12} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

Let f:R to R be a differentiable function such that f(2)=2 . Then, the value of lim_(xrarr2) int_(2)^(f(x))(4t^3)/(x-2) dt , is

The value of lim_(x rarr0)(int_(0)^(x) xe^(t^(2))dt)/(1+x-e^(x)) is equal to

The value of lim_(x rarr0)(int_(0)^(x^(2))cos t^(2)dt)/(x sin x) is

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is

The value of lim_(x rarr oo)((int_(0)^(x+y)e^(t^(2))dt)^(2))/(int_(0)^(x+y)e^(2t^(2))dt) is equal to (i)0(ii)1 (iii) lim_(x rarr0)((int_(0)^(x)cos t^(2))/(x))-1(iv)-1

lim_(x rarr oo)int_(0)^(x)xe^(t^(2)-x^(2))dt

Evaluate: lim_(x rarr0)(int_(0)^(x)cos t^(2)dt)/(x)

Let f be real-valued function such that f(2)=2 and f'(2)=1 then lim_(x rarr2)int_(2)^(f(x))(4t^(3))/(x-2)backslash dt is equal to :

MTG-WBJEE-DEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. If f(x)={{:(2x^(2)+1",",xle1),(4x^(3)-1",",xgt1):}, then int(0)^(2)f(x...

    Text Solution

    |

  2. If I=int(0)^(2)e^(x^(4))(x-alpha)dx=0, then alpha lies in the interval

    Text Solution

    |

  3. The value of lim(xrarr2)int(2)^(x)(3t^(2))/(x-2)dt is

    Text Solution

    |

  4. Let f(x) denote the fractional part of a real number x. Then the value...

    Text Solution

    |

  5. Let f: RvecR be a continuous function which satisfies f(x)= int0^xf(t...

    Text Solution

    |

  6. lim(nrarroo)(sqrt1+sqrt2+…+sqrt(n-1))/(nsqrtn)=

    Text Solution

    |

  7. int0^1log(1/x-1)dx is equal to

    Text Solution

    |

  8. Estimate the absolute value of the integral int(10)^(19)(sinx)/(1+x^8)...

    Text Solution

    |

  9. L e tI1=int0^n[x]dxandI2=int0^n{x}dx ,where [x] and {x} are integral a...

    Text Solution

    |

  10. The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in...

    Text Solution

    |

  11. int0^1000 e^(x-[x])dx

    Text Solution

    |

  12. If M=int(0)^((pi)/2)(cosx)/(x+2)dx and N=int(0)^((pi)/4)(sinxcosx)/((x...

    Text Solution

    |

  13. The value of the integral I = int(1//2014)^(2014)(tan^(-1) x)/x dx is

    Text Solution

    |

  14. Let I=int(pi//4)^(pi//3)(sinx)/(x)dx. Then

    Text Solution

    |

  15. The value of I=int(pi//2)^(5pi//2)(e^(tan^(-1)(sinx)))/(e^(tan^(-1)(si...

    Text Solution

    |

  16. The value of lim(nrarroo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n...

    Text Solution

    |

  17. The value of the integratio int(-pi//4)^(pi//4)(lambda|sinx|+(mu sinx)...

    Text Solution

    |

  18. lim(x->0) 1/x [int(y->a)e^(sin^2t) dt-int(x+y->a)e^(sin^2t)dt] is equa...

    Text Solution

    |

  19. The value of the integral int(-1)^(1){(x^(2015))/(e^(|x|)(x^(2)+cosx))...

    Text Solution

    |

  20. Let [a] denote the greatest integer which is less than or equal to a. ...

    Text Solution

    |