Home
Class 12
MATHS
Let f(x) denote the fractional part of a...

Let f(x) denote the fractional part of a real number x. Then the value of `int_(0)^(sqrt3)f(x^(2))dx` is

A

`2sqrt3-sqrt2-1`

B

0

C

`sqrt2-sqrt3+1`

D

`sqrt3-sqrt2+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\sqrt{3}} f(x^2) \, dx \), where \( f(x) \) denotes the fractional part of \( x \), we can follow these steps: ### Step 1: Understanding the Function \( f(x) \) The fractional part function \( f(x) \) can be expressed as: \[ f(x) = x - \lfloor x \rfloor \] Thus, for \( f(x^2) \): \[ f(x^2) = x^2 - \lfloor x^2 \rfloor \] ### Step 2: Setting Up the Integral We can rewrite the integral: \[ \int_{0}^{\sqrt{3}} f(x^2) \, dx = \int_{0}^{\sqrt{3}} \left( x^2 - \lfloor x^2 \rfloor \right) \, dx \] This can be separated into two integrals: \[ \int_{0}^{\sqrt{3}} x^2 \, dx - \int_{0}^{\sqrt{3}} \lfloor x^2 \rfloor \, dx \] ### Step 3: Calculating the First Integral The first integral \( \int_{0}^{\sqrt{3}} x^2 \, dx \) can be computed as follows: \[ \int x^2 \, dx = \frac{x^3}{3} \] Evaluating from \( 0 \) to \( \sqrt{3} \): \[ \left[ \frac{x^3}{3} \right]_{0}^{\sqrt{3}} = \frac{(\sqrt{3})^3}{3} - \frac{0^3}{3} = \frac{3\sqrt{3}}{3} = \sqrt{3} \] ### Step 4: Calculating the Second Integral Next, we need to evaluate \( \int_{0}^{\sqrt{3}} \lfloor x^2 \rfloor \, dx \). We will break this integral into segments based on the values of \( \lfloor x^2 \rfloor \): 1. **From \( 0 \) to \( 1 \)**: Here, \( 0 \leq x^2 < 1 \) so \( \lfloor x^2 \rfloor = 0 \). \[ \int_{0}^{1} \lfloor x^2 \rfloor \, dx = 0 \] 2. **From \( 1 \) to \( \sqrt{2} \)**: Here, \( 1 \leq x^2 < 2 \) so \( \lfloor x^2 \rfloor = 1 \). \[ \int_{1}^{\sqrt{2}} \lfloor x^2 \rfloor \, dx = \int_{1}^{\sqrt{2}} 1 \, dx = \left[ x \right]_{1}^{\sqrt{2}} = \sqrt{2} - 1 \] 3. **From \( \sqrt{2} \) to \( \sqrt{3} \)**: Here, \( 2 \leq x^2 < 3 \) so \( \lfloor x^2 \rfloor = 2 \). \[ \int_{\sqrt{2}}^{\sqrt{3}} \lfloor x^2 \rfloor \, dx = \int_{\sqrt{2}}^{\sqrt{3}} 2 \, dx = 2 \left[ x \right]_{\sqrt{2}}^{\sqrt{3}} = 2(\sqrt{3} - \sqrt{2}) \] Now, we can combine these results: \[ \int_{0}^{\sqrt{3}} \lfloor x^2 \rfloor \, dx = 0 + (\sqrt{2} - 1) + 2(\sqrt{3} - \sqrt{2}) = \sqrt{2} - 1 + 2\sqrt{3} - 2\sqrt{2} = 2\sqrt{3} - \sqrt{2} - 1 \] ### Step 5: Putting It All Together Now we can substitute back into our original integral: \[ \int_{0}^{\sqrt{3}} f(x^2) \, dx = \sqrt{3} - (2\sqrt{3} - \sqrt{2} - 1) \] Simplifying this gives: \[ \sqrt{3} - 2\sqrt{3} + \sqrt{2} + 1 = -\sqrt{3} + \sqrt{2} + 1 \] ### Final Answer Thus, the value of the integral is: \[ \sqrt{2} - \sqrt{3} + 1 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

Let [x] and {x} be the integer part and fractional part of a real number x respectively. The value of the integral int_(0)^(5)[x]{x}dx is -

Let {x} and [x] denote the fractional and integral part of a real number x respectively. The value (s) of x satisfying 4{x} = x + [x] is/are

Let f(x)=max{x+|x|,x-[x]}, where [x] denotes the greatest integer <=x. Then the value of int_(-3)^(3)f(x)dx is:

Let f(x) be a differentiable function in the interval (0, 2) then the value of int_(0)^(2)f(x)dx

If {x} denotes the fractional part of x, then I = int _(0) ^(100) (sqrtx)dx, then the value of (9f)/(155) is:

If f(n)=(int_(0)^(n)[x]dx)/(int_(0)^(n){x}dx)( where,[^(*)] and {^(*)} denotes greatest integer and tractional part of x and n in N). Then,the value of f(4) is...

If f(x) and [x] denote respectively the fractional and integeral parts of a real number x, then the number of solution of the euation 4{x}=x+[x] , is

If f(x)=min({x},{-x})x in R, where {x} denotes the fractional part of x, then int_(-100)^(100)f(x)dx is

If {x} denotes the fractional part of x, then int_(0)^(x)({x}-(1)/(2)) dx is equal to

MTG-WBJEE-DEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. If I=int(0)^(2)e^(x^(4))(x-alpha)dx=0, then alpha lies in the interval

    Text Solution

    |

  2. The value of lim(xrarr2)int(2)^(x)(3t^(2))/(x-2)dt is

    Text Solution

    |

  3. Let f(x) denote the fractional part of a real number x. Then the value...

    Text Solution

    |

  4. Let f: RvecR be a continuous function which satisfies f(x)= int0^xf(t...

    Text Solution

    |

  5. lim(nrarroo)(sqrt1+sqrt2+…+sqrt(n-1))/(nsqrtn)=

    Text Solution

    |

  6. int0^1log(1/x-1)dx is equal to

    Text Solution

    |

  7. Estimate the absolute value of the integral int(10)^(19)(sinx)/(1+x^8)...

    Text Solution

    |

  8. L e tI1=int0^n[x]dxandI2=int0^n{x}dx ,where [x] and {x} are integral a...

    Text Solution

    |

  9. The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in...

    Text Solution

    |

  10. int0^1000 e^(x-[x])dx

    Text Solution

    |

  11. If M=int(0)^((pi)/2)(cosx)/(x+2)dx and N=int(0)^((pi)/4)(sinxcosx)/((x...

    Text Solution

    |

  12. The value of the integral I = int(1//2014)^(2014)(tan^(-1) x)/x dx is

    Text Solution

    |

  13. Let I=int(pi//4)^(pi//3)(sinx)/(x)dx. Then

    Text Solution

    |

  14. The value of I=int(pi//2)^(5pi//2)(e^(tan^(-1)(sinx)))/(e^(tan^(-1)(si...

    Text Solution

    |

  15. The value of lim(nrarroo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n...

    Text Solution

    |

  16. The value of the integratio int(-pi//4)^(pi//4)(lambda|sinx|+(mu sinx)...

    Text Solution

    |

  17. lim(x->0) 1/x [int(y->a)e^(sin^2t) dt-int(x+y->a)e^(sin^2t)dt] is equa...

    Text Solution

    |

  18. The value of the integral int(-1)^(1){(x^(2015))/(e^(|x|)(x^(2)+cosx))...

    Text Solution

    |

  19. Let [a] denote the greatest integer which is less than or equal to a. ...

    Text Solution

    |

  20. The value of the integral int(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))...

    Text Solution

    |