Home
Class 12
MATHS
lim(nrarroo)(sqrt1+sqrt2+…+sqrt(n-1))/(n...

`lim_(nrarroo)(sqrt1+sqrt2+…+sqrt(n-1))/(nsqrtn)=`

A

`1//2`

B

`1//3`

C

``2//3`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \frac{\sqrt{1} + \sqrt{2} + \ldots + \sqrt{n-1}}{n \sqrt{n}}, \] we can follow these steps: ### Step 1: Rewrite the Summation We can express the numerator as a summation: \[ \sqrt{1} + \sqrt{2} + \ldots + \sqrt{n-1} = \sum_{r=1}^{n-1} \sqrt{r}. \] Thus, our limit becomes: \[ \lim_{n \to \infty} \frac{\sum_{r=1}^{n-1} \sqrt{r}}{n \sqrt{n}}. \] ### Step 2: Use the Definition of Riemann Sums As \( n \to \infty \), the sum can be approximated by a definite integral. We can express the sum as: \[ \sum_{r=1}^{n-1} \sqrt{r} \approx n \int_0^1 \sqrt{x} \, dx, \] where we substitute \( r = nx \) and \( \Delta x = \frac{1}{n} \). ### Step 3: Change of Variables Let \( x = \frac{r}{n} \), then \( r = nx \) and \( dr = n \, dx \). The limits change as follows: - When \( r = 1 \), \( x = \frac{1}{n} \to 0 \) as \( n \to \infty \). - When \( r = n-1 \), \( x = \frac{n-1}{n} \to 1 \) as \( n \to \infty \). Thus, the limit can be rewritten as: \[ \lim_{n \to \infty} \frac{n \int_0^1 \sqrt{nx} \, dx}{n \sqrt{n}}. \] ### Step 4: Evaluate the Integral Now, we can evaluate the integral: \[ \int_0^1 \sqrt{nx} \, dx = \sqrt{n} \int_0^1 \sqrt{x} \, dx. \] The integral \( \int_0^1 \sqrt{x} \, dx \) can be computed as: \[ \int_0^1 x^{1/2} \, dx = \left[ \frac{x^{3/2}}{3/2} \right]_0^1 = \frac{2}{3}. \] Thus, \[ \int_0^1 \sqrt{nx} \, dx = \sqrt{n} \cdot \frac{2}{3}. \] ### Step 5: Substitute Back into the Limit Substituting back, we have: \[ \lim_{n \to \infty} \frac{n \cdot \sqrt{n} \cdot \frac{2}{3}}{n \sqrt{n}} = \lim_{n \to \infty} \frac{2}{3} = \frac{2}{3}. \] ### Final Answer Thus, the limit is: \[ \lim_{n \to \infty} \frac{\sqrt{1} + \sqrt{2} + \ldots + \sqrt{n-1}}{n \sqrt{n}} = \frac{2}{3}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1)/(sqrt(n)sqrt(n+1))+(1)/(sqrt(n)sqrt(n+2))+......+(1)/(sqrt(n)sqrt(4n))

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

lim_(n rarr oo) sqrt(n)/sqrt(n+1)=

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

lim_(n rarr oo)((sqrt(n+3)-sqrt(n+2))/(sqrt(n+2)-sqrt(n+1)))

The value of lim_(n rarr oo)(sqrt(1)+sqrt(2)+sqrt(3)+....+2sqrt(n))/(n sqrt(n)) is

The value of lim_(xrarroo)(sqrt(n^2+1)+sqrt(n))/(4sqrt(n^4+n)+4sqrt(n)) , is

lim_(n rarr oo)(sqrt(n^(2)+n)-sqrt(n^2+1))

lim_(n rarr4)(sqrt(2n+1)-3)/(sqrt(n-1)-sqrt(2))

The value of lim_(nrarroo) ((sqrtn^(2)+n-1)/(n))^(2sqrt(n^(2)+n-1)) is

MTG-WBJEE-DEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. Let f(x) denote the fractional part of a real number x. Then the value...

    Text Solution

    |

  2. Let f: RvecR be a continuous function which satisfies f(x)= int0^xf(t...

    Text Solution

    |

  3. lim(nrarroo)(sqrt1+sqrt2+…+sqrt(n-1))/(nsqrtn)=

    Text Solution

    |

  4. int0^1log(1/x-1)dx is equal to

    Text Solution

    |

  5. Estimate the absolute value of the integral int(10)^(19)(sinx)/(1+x^8)...

    Text Solution

    |

  6. L e tI1=int0^n[x]dxandI2=int0^n{x}dx ,where [x] and {x} are integral a...

    Text Solution

    |

  7. The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in...

    Text Solution

    |

  8. int0^1000 e^(x-[x])dx

    Text Solution

    |

  9. If M=int(0)^((pi)/2)(cosx)/(x+2)dx and N=int(0)^((pi)/4)(sinxcosx)/((x...

    Text Solution

    |

  10. The value of the integral I = int(1//2014)^(2014)(tan^(-1) x)/x dx is

    Text Solution

    |

  11. Let I=int(pi//4)^(pi//3)(sinx)/(x)dx. Then

    Text Solution

    |

  12. The value of I=int(pi//2)^(5pi//2)(e^(tan^(-1)(sinx)))/(e^(tan^(-1)(si...

    Text Solution

    |

  13. The value of lim(nrarroo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n...

    Text Solution

    |

  14. The value of the integratio int(-pi//4)^(pi//4)(lambda|sinx|+(mu sinx)...

    Text Solution

    |

  15. lim(x->0) 1/x [int(y->a)e^(sin^2t) dt-int(x+y->a)e^(sin^2t)dt] is equa...

    Text Solution

    |

  16. The value of the integral int(-1)^(1){(x^(2015))/(e^(|x|)(x^(2)+cosx))...

    Text Solution

    |

  17. Let [a] denote the greatest integer which is less than or equal to a. ...

    Text Solution

    |

  18. The value of the integral int(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))...

    Text Solution

    |

  19. If [x] denotes the greatest integer less than or equal to x , then fin...

    Text Solution

    |

  20. If f(x)=int(-1)^(x)|t|dt, then for any x ge0,f(x) is equal to

    Text Solution

    |