Home
Class 12
MATHS
The value of lim(nrarroo)(1)/(n)[sec^(2)...

The value of `lim_(nrarroo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n)+….+sec^(2)""(npi)/(4n)]` is

A

`log_(e)2`

B

`(pi)/(2)`

C

`(4)/(pi)`

D

e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \frac{1}{n} \left[ \sec^2 \left( \frac{\pi}{4n} \right) + \sec^2 \left( \frac{2\pi}{4n} \right) + \ldots + \sec^2 \left( \frac{n\pi}{4n} \right) \right], \] we can express the sum as a Riemann sum, which will help us convert it into a definite integral. ### Step-by-Step Solution 1. **Rewrite the limit as a summation**: We can express the limit as: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \sec^2 \left( \frac{r\pi}{4n} \right). \] 2. **Identify the Riemann sum**: As \( n \to \infty \), the term \( \frac{r}{n} \) can be thought of as a variable \( x \) ranging from 0 to 1. We can rewrite \( \frac{r\pi}{4n} \) as \( \frac{\pi}{4} \cdot \frac{r}{n} = \frac{\pi}{4} x \). Thus, we can express the summation as: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \sec^2 \left( \frac{\pi}{4} \cdot \frac{r}{n} \right) \cdot \frac{1}{n}. \] This is a Riemann sum for the function \( \sec^2 \left( \frac{\pi}{4} x \right) \) over the interval [0, 1]. 3. **Convert to a definite integral**: Therefore, we can write: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \sec^2 \left( \frac{r\pi}{4n} \right) = \int_{0}^{1} \sec^2 \left( \frac{\pi}{4} x \right) dx. \] 4. **Evaluate the integral**: The integral can be evaluated using the known integral of \( \sec^2 x \): \[ \int \sec^2 x \, dx = \tan x + C. \] Thus, \[ \int_{0}^{1} \sec^2 \left( \frac{\pi}{4} x \right) dx = \left[ \tan \left( \frac{\pi}{4} x \right) \cdot \frac{4}{\pi} \right]_{0}^{1}. \] 5. **Calculate the limits**: - At \( x = 1 \): \[ \tan \left( \frac{\pi}{4} \cdot 1 \right) = \tan \left( \frac{\pi}{4} \right) = 1. \] - At \( x = 0 \): \[ \tan \left( \frac{\pi}{4} \cdot 0 \right) = \tan(0) = 0. \] Therefore, \[ \int_{0}^{1} \sec^2 \left( \frac{\pi}{4} x \right) dx = \left( 1 \cdot \frac{4}{\pi} \right) - \left( 0 \cdot \frac{4}{\pi} \right) = \frac{4}{\pi}. \] 6. **Final result**: Thus, the value of the limit is: \[ \frac{4}{\pi}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)(1)/(n^(2)){(sin^(3)pi)/(4n)+2(sin^(3)(2 pi))/(4n)+...+n(sin^(3)(n pi))/(4n)} is equal to

Find the value of lim_(n rarr oo)(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(4n)

The value of lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n)) is equal to

Evaluate: (lim_(n rarr oo)n cos((pi)/(4n))sin((pi)/(4n))

lim_ (n rarr oo) (1) / (n) [tan ((pi) / (4n)) + tan ((2 pi) / (4n)) + ... tan ((n pi) / (4n) )]

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

The value of lim_(nrarroo) ((sqrtn^(2)+n-1)/(n))^(2sqrt(n^(2)+n-1)) is

Evaluate lim_(nrarroo)(2)/(n)(sin.(pi)/(2n)+sin.(2pi)/(2n)+sin.(3pi)/(2n)+....+sin.(npi)/(2n))

MTG-WBJEE-DEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. Let f: RvecR be a continuous function which satisfies f(x)= int0^xf(t...

    Text Solution

    |

  2. lim(nrarroo)(sqrt1+sqrt2+…+sqrt(n-1))/(nsqrtn)=

    Text Solution

    |

  3. int0^1log(1/x-1)dx is equal to

    Text Solution

    |

  4. Estimate the absolute value of the integral int(10)^(19)(sinx)/(1+x^8)...

    Text Solution

    |

  5. L e tI1=int0^n[x]dxandI2=int0^n{x}dx ,where [x] and {x} are integral a...

    Text Solution

    |

  6. The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in...

    Text Solution

    |

  7. int0^1000 e^(x-[x])dx

    Text Solution

    |

  8. If M=int(0)^((pi)/2)(cosx)/(x+2)dx and N=int(0)^((pi)/4)(sinxcosx)/((x...

    Text Solution

    |

  9. The value of the integral I = int(1//2014)^(2014)(tan^(-1) x)/x dx is

    Text Solution

    |

  10. Let I=int(pi//4)^(pi//3)(sinx)/(x)dx. Then

    Text Solution

    |

  11. The value of I=int(pi//2)^(5pi//2)(e^(tan^(-1)(sinx)))/(e^(tan^(-1)(si...

    Text Solution

    |

  12. The value of lim(nrarroo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n...

    Text Solution

    |

  13. The value of the integratio int(-pi//4)^(pi//4)(lambda|sinx|+(mu sinx)...

    Text Solution

    |

  14. lim(x->0) 1/x [int(y->a)e^(sin^2t) dt-int(x+y->a)e^(sin^2t)dt] is equa...

    Text Solution

    |

  15. The value of the integral int(-1)^(1){(x^(2015))/(e^(|x|)(x^(2)+cosx))...

    Text Solution

    |

  16. Let [a] denote the greatest integer which is less than or equal to a. ...

    Text Solution

    |

  17. The value of the integral int(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))...

    Text Solution

    |

  18. If [x] denotes the greatest integer less than or equal to x , then fin...

    Text Solution

    |

  19. If f(x)=int(-1)^(x)|t|dt, then for any x ge0,f(x) is equal to

    Text Solution

    |

  20. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |