Home
Class 12
MATHS
Let [a] denote the greatest integer whic...

Let `[a]` denote the greatest integer which is less than or equal to a. Then the value of the integral `int_(-pi//2)^(pi//2)[sinxcosx]dx` is

A

`(pi)/(2)`

B

`pi`

C

`-pi`

D

`-(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x \cos x \, dx \), we will follow these steps: ### Step 1: Simplify the integrand We can use the double angle identity for sine: \[ \sin x \cos x = \frac{1}{2} \sin(2x) \] Thus, we can rewrite the integral as: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x \cos x \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} \sin(2x) \, dx \] ### Step 2: Factor out the constant We can factor out the constant \( \frac{1}{2} \): \[ I = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(2x) \, dx \] ### Step 3: Evaluate the integral Now, we will evaluate the integral \( \int \sin(2x) \, dx \): \[ \int \sin(2x) \, dx = -\frac{1}{2} \cos(2x) + C \] Now, we will evaluate this from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \): \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(2x) \, dx = \left[-\frac{1}{2} \cos(2x)\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \] ### Step 4: Calculate the limits Calculating the limits: \[ = -\frac{1}{2} \left( \cos(\pi) - \cos(-\pi) \right) \] Since \( \cos(\pi) = -1 \) and \( \cos(-\pi) = -1 \): \[ = -\frac{1}{2} \left( -1 - (-1) \right) = -\frac{1}{2} \cdot 0 = 0 \] ### Step 5: Substitute back into the integral Now substituting back into our expression for \( I \): \[ I = \frac{1}{2} \cdot 0 = 0 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

If [X] denotes the gratest integer less than or equal to x, then the value of the integeral int _( - pi //2) ^( pi//2)[[x] - sin x]dx is equal to :

If [x] denotes the greatest integer less than or equal to x, then find the value of the integral int_(0)^(2)x^(2)[x]dx

Let [x] denote the greatest integer less than or equal to x.the value of the integeral int_(1)^(n)[x]^(x-{x})dx

Let [x] denote the greatest integer less than or equal to x, then the value of the integral int_(-1)^(1)(|x|-2[x])dx is equal to

If for all real numbers y,[y] is the greatest integer less than or equal to y, then the value of the integral int_(pi/2)^(3 pi/2)[2sin x]dx is -pi b.0cpi/2d. pi/2

If for a real number y,[y] is the greatest integral function less,then or equal to y, then the value of the integral int_((pi)/(2))^((pi)/(2))[2sin x]dx is -pi (b) 0(c)-(pi)/(2)(d)(pi)/(2)

Let [x] denote the greatest integer less than or equal to x. Then the value of int_(1)^(2)|2x-[3x]|dx is ______

Let [x] denote the greatest integer less than or equal to x . Then, int_(1)^(-1)[x]dx=?

Let [x] denote the greatest integer less than or equal to x . Then, int_(0)^(1.5)[x]dx=?

Let [x] denotes the greatest integer less than or equal to x and f(x)= [tan^(2)x] .Then

MTG-WBJEE-DEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. Let f: RvecR be a continuous function which satisfies f(x)= int0^xf(t...

    Text Solution

    |

  2. lim(nrarroo)(sqrt1+sqrt2+…+sqrt(n-1))/(nsqrtn)=

    Text Solution

    |

  3. int0^1log(1/x-1)dx is equal to

    Text Solution

    |

  4. Estimate the absolute value of the integral int(10)^(19)(sinx)/(1+x^8)...

    Text Solution

    |

  5. L e tI1=int0^n[x]dxandI2=int0^n{x}dx ,where [x] and {x} are integral a...

    Text Solution

    |

  6. The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in...

    Text Solution

    |

  7. int0^1000 e^(x-[x])dx

    Text Solution

    |

  8. If M=int(0)^((pi)/2)(cosx)/(x+2)dx and N=int(0)^((pi)/4)(sinxcosx)/((x...

    Text Solution

    |

  9. The value of the integral I = int(1//2014)^(2014)(tan^(-1) x)/x dx is

    Text Solution

    |

  10. Let I=int(pi//4)^(pi//3)(sinx)/(x)dx. Then

    Text Solution

    |

  11. The value of I=int(pi//2)^(5pi//2)(e^(tan^(-1)(sinx)))/(e^(tan^(-1)(si...

    Text Solution

    |

  12. The value of lim(nrarroo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n...

    Text Solution

    |

  13. The value of the integratio int(-pi//4)^(pi//4)(lambda|sinx|+(mu sinx)...

    Text Solution

    |

  14. lim(x->0) 1/x [int(y->a)e^(sin^2t) dt-int(x+y->a)e^(sin^2t)dt] is equa...

    Text Solution

    |

  15. The value of the integral int(-1)^(1){(x^(2015))/(e^(|x|)(x^(2)+cosx))...

    Text Solution

    |

  16. Let [a] denote the greatest integer which is less than or equal to a. ...

    Text Solution

    |

  17. The value of the integral int(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))...

    Text Solution

    |

  18. If [x] denotes the greatest integer less than or equal to x , then fin...

    Text Solution

    |

  19. If f(x)=int(-1)^(x)|t|dt, then for any x ge0,f(x) is equal to

    Text Solution

    |

  20. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |