Home
Class 12
MATHS
The value of the integral int(pi//6)^(pi...

The value of the integral `int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx` is equal to

A

`log_(e)((2(pi+3))/(2pi+3sqrt3))`

B

`log_(e)((pi+3)/(2(2pi+3sqrt3)))`

C

`log_(e)((2pi+3sqrt3)/(2(pi+3)))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\sin x - x \cos x}{x(x + \sin x)} \, dx, \] we will follow a systematic approach. ### Step 1: Rewrite the Integral We start by rewriting the integrand: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\sin x - x \cos x}{x(x + \sin x)} \, dx. \] Notice that we can separate the terms in the numerator: \[ \sin x - x \cos x = \sin x + x - x - x \cos x = \frac{\sin x + x - x(1 + \cos x)}{x(x + \sin x)}. \] ### Step 2: Split the Integral Now we can split the integral into two parts: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\sin x + x}{x(x + \sin x)} \, dx - \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{x(1 + \cos x)}{x(x + \sin x)} \, dx. \] This simplifies to: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{1}{x} \, dx - \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{1 + \cos x}{x + \sin x} \, dx. \] ### Step 3: Evaluate the First Integral The first integral is straightforward: \[ \int \frac{1}{x} \, dx = \ln |x| \Rightarrow \left[ \ln x \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} = \ln \left(\frac{\pi}{2}\right) - \ln \left(\frac{\pi}{6}\right) = \ln \left(\frac{\frac{\pi}{2}}{\frac{\pi}{6}}\right) = \ln 3. \] ### Step 4: Evaluate the Second Integral For the second integral, we can use substitution. Let \( w = \sin x + x \), then \( dw = (\cos x + 1) \, dx \). The limits change as follows: - When \( x = \frac{\pi}{6} \), \( w = \sin\left(\frac{\pi}{6}\right) + \frac{\pi}{6} = \frac{1}{2} + \frac{\pi}{6} \). - When \( x = \frac{\pi}{2} \), \( w = \sin\left(\frac{\pi}{2}\right) + \frac{\pi}{2} = 1 + \frac{\pi}{2} \). Thus, we rewrite the second integral: \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{1 + \cos x}{x + \sin x} \, dx = \int_{\frac{1}{2} + \frac{\pi}{6}}^{1 + \frac{\pi}{2}} \frac{1}{w} \, dw = \left[ \ln w \right]_{\frac{1}{2} + \frac{\pi}{6}}^{1 + \frac{\pi}{2}}. \] ### Step 5: Combine the Results Now we combine the results: \[ I = \ln 3 - \left( \ln(1 + \frac{\pi}{2}) - \ln(\frac{1}{2} + \frac{\pi}{6}) \right). \] This simplifies to: \[ I = \ln 3 + \ln\left(\frac{\frac{1}{2} + \frac{\pi}{6}}{1 + \frac{\pi}{2}}\right). \] ### Final Answer Thus, the value of the integral is: \[ I = \ln\left(3 \cdot \frac{\frac{1}{2} + \frac{\pi}{6}}{1 + \frac{\pi}{2}}\right). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi//4)+1)dx is

The value of the integral int_(0)^(pi//4) (sinx+cosx)/(3+sin2x)dx ,is

int_(pi/3)^(pi/2) sinx dx

The value of the integral int_(pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is

The integral int_(-pi//2)^(pi//2)(e^(|sinx|).cosx)/(1+e^(tanx))dx equals

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of the definite integral int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx is equal to

int_(-pi//2)^(pi//2)(sinx)/(1+cos^(2)x)e^(-cos^(2)x)dx is equal to

If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0) then the value of the integral int_(-pi//4)^(pi//4)g(f(x)) dx is

The value of the integral int_(0)^(pi)(e^(|cosx|)sinx)/(1+e^(cotx))dx is equal to

MTG-WBJEE-DEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. Let f: RvecR be a continuous function which satisfies f(x)= int0^xf(t...

    Text Solution

    |

  2. lim(nrarroo)(sqrt1+sqrt2+…+sqrt(n-1))/(nsqrtn)=

    Text Solution

    |

  3. int0^1log(1/x-1)dx is equal to

    Text Solution

    |

  4. Estimate the absolute value of the integral int(10)^(19)(sinx)/(1+x^8)...

    Text Solution

    |

  5. L e tI1=int0^n[x]dxandI2=int0^n{x}dx ,where [x] and {x} are integral a...

    Text Solution

    |

  6. The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in...

    Text Solution

    |

  7. int0^1000 e^(x-[x])dx

    Text Solution

    |

  8. If M=int(0)^((pi)/2)(cosx)/(x+2)dx and N=int(0)^((pi)/4)(sinxcosx)/((x...

    Text Solution

    |

  9. The value of the integral I = int(1//2014)^(2014)(tan^(-1) x)/x dx is

    Text Solution

    |

  10. Let I=int(pi//4)^(pi//3)(sinx)/(x)dx. Then

    Text Solution

    |

  11. The value of I=int(pi//2)^(5pi//2)(e^(tan^(-1)(sinx)))/(e^(tan^(-1)(si...

    Text Solution

    |

  12. The value of lim(nrarroo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n...

    Text Solution

    |

  13. The value of the integratio int(-pi//4)^(pi//4)(lambda|sinx|+(mu sinx)...

    Text Solution

    |

  14. lim(x->0) 1/x [int(y->a)e^(sin^2t) dt-int(x+y->a)e^(sin^2t)dt] is equa...

    Text Solution

    |

  15. The value of the integral int(-1)^(1){(x^(2015))/(e^(|x|)(x^(2)+cosx))...

    Text Solution

    |

  16. Let [a] denote the greatest integer which is less than or equal to a. ...

    Text Solution

    |

  17. The value of the integral int(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))...

    Text Solution

    |

  18. If [x] denotes the greatest integer less than or equal to x , then fin...

    Text Solution

    |

  19. If f(x)=int(-1)^(x)|t|dt, then for any x ge0,f(x) is equal to

    Text Solution

    |

  20. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |