Home
Class 12
MATHS
If A^(2)-3A+2I=0, then A =...

If `A^(2)-3A+2I=0`, then A =

A

`I`

B

`2I`

C

`[(3, -2),(1,0)]`

D

`[(3, 1),(-2, 0)]`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If A^(2) - 3 A + 2I = 0, then A is equal to

If A=[[3, 1], [-1, 2]] and A^(2)-5A+7I=0 , then I=

If a matrix A is such that 3A^(3)+2A^(2)+5A+I=0, then A^(-1) is equal to

If a matrix A is such that 4A^(3)+2A^(2)+7A+I=0 , then A^(-1) equals

A^(3)-2A^(2)-A+2I=0 if A=

If a matrix A is such that 3A^(3)+2A^(2)+5A+I=0 , then its inverse is

If A^(3)=0 then I+A+A^2 equals

If A=[{:(2,0),(0,2):}] then A^(2) - 3I =……