Home
Class 12
MATHS
If z is a point on the circle |z-1|=1, t...

If z is a point on the circle `|z-1|=1,` then arg z =

A

`arg|z-1|`

B

`(1)/(2)arg(z-1)`

C

`arg(z^(2)-z)`

D

`(1)/(3)arg(z^(2)-z)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the argument of the complex number \( z \) given that \( |z - 1| = 1 \). This equation describes a circle in the complex plane with center at \( 1 \) and radius \( 1 \). ### Step-by-step Solution: 1. **Understanding the Circle**: The equation \( |z - 1| = 1 \) indicates that \( z \) lies on a circle centered at the point \( 1 \) on the real axis (which corresponds to the complex number \( 1 + 0i \)) with a radius of \( 1 \). 2. **Expressing \( z \)**: We can express \( z \) in terms of an angle \( \theta \): \[ z - 1 = e^{i\theta} \quad \text{(where \( \theta \) is the angle in radians)} \] Thus, we can write: \[ z = 1 + e^{i\theta} = 1 + \cos(\theta) + i\sin(\theta) \] 3. **Finding the Argument of \( z \)**: The argument of \( z \) can be found using the formula for the argument of a complex number: \[ \text{arg}(z) = \tan^{-1}\left(\frac{\text{Im}(z)}{\text{Re}(z)}\right) \] Here, the real part \( \text{Re}(z) = 1 + \cos(\theta) \) and the imaginary part \( \text{Im}(z) = \sin(\theta) \). 4. **Calculating the Argument**: Therefore, we have: \[ \text{arg}(z) = \tan^{-1}\left(\frac{\sin(\theta)}{1 + \cos(\theta)}\right) \] Using the identity \( 1 + \cos(\theta) = 2\cos^2(\frac{\theta}{2}) \) and \( \sin(\theta) = 2\sin(\frac{\theta}{2}\cos(\frac{\theta}{2}) \), we can rewrite the argument: \[ \text{arg}(z) = \tan^{-1}\left(\frac{2\sin(\frac{\theta}{2})\cos(\frac{\theta}{2})}{2\cos^2(\frac{\theta}{2})}\right) = \tan^{-1}\left(\tan\left(\frac{\theta}{2}\right)\right) \] Thus, we find: \[ \text{arg}(z) = \frac{\theta}{2} \] 5. **Relating to \( \text{arg}(z - 1) \)**: Since \( z - 1 = e^{i\theta} \), we have: \[ \text{arg}(z - 1) = \theta \] Therefore, we can relate the arguments: \[ \text{arg}(z) = \frac{1}{2} \text{arg}(z - 1) \] ### Final Result: Thus, we conclude that: \[ \text{arg}(z) = \frac{1}{2} \text{arg}(z - 1) \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

Given that |z-1|=1, where z is a point on the argand planne , show that (z-2)/(z)=itan (arg z), where i=sqrt(-1).

If z_(1),z_(2) and z_(3),z_(4) are two pairs of conjugate complex numbers then arg ((z_(1))/(z_(4)))+arg((z_(2))/(z_(3))) equals

If z_(1),z_(2),z_(3),z_(4) are two pairs of conjugate complex numbers, then arg(z_(1)/z_(3)) + arg(z_(2)/z_(4)) is

If | z_ (1) + z_ (2) | = | z_ (1) -z_ (2) |, then arg z_ (1) -arg z_ (2) =