Home
Class 12
MATHS
Let f(x)=x^(2)+xg'(1)+g''(2) and g(x)=f(...

Let `f(x)=x^(2)+xg'(1)+g''(2) and g(x)=f(1).x^(2)+xf'(x)+f''(x)` then

A

`f'(1)+f'(2)=0`

B

`g'(2)=g'(1)`

C

`g''(2)+f''(3)=6`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( f(x) \) and \( g(x) \) given in the question. 1. **Define the functions**: \[ f(x) = x^2 + x g'(1) + g''(2) \] \[ g(x) = f(1) \cdot x^2 + x f'(x) + f''(x) \] 2. **Differentiate \( f(x) \)**: Differentiate \( f(x) \) with respect to \( x \): \[ f'(x) = \frac{d}{dx}(x^2) + \frac{d}{dx}(x g'(1)) + \frac{d}{dx}(g''(2)) \] Since \( g'(1) \) and \( g''(2) \) are constants, we have: \[ f'(x) = 2x + g'(1) \] 3. **Differentiate \( f'(x) \)**: Now differentiate \( f'(x) \): \[ f''(x) = \frac{d}{dx}(2x + g'(1)) = 2 \] 4. **Evaluate \( f(1) \)**: Substitute \( x = 1 \) into \( f(x) \): \[ f(1) = 1^2 + 1 \cdot g'(1) + g''(2) = 1 + g'(1) + g''(2) \] 5. **Substitute \( f(1) \) into \( g(x) \)**: Now substitute \( f(1) \) into \( g(x) \): \[ g(x) = (1 + g'(1) + g''(2)) \cdot x^2 + x f'(x) + f''(x) \] Substitute \( f'(x) \) and \( f''(x) \): \[ g(x) = (1 + g'(1) + g''(2)) \cdot x^2 + x(2x + g'(1)) + 2 \] Simplifying this gives: \[ g(x) = (1 + g'(1) + g''(2)) \cdot x^2 + 2x^2 + xg'(1) + 2 \] Combine like terms: \[ g(x) = (3 + g'(1) + g''(2)) \cdot x^2 + xg'(1) + 2 \] 6. **Differentiate \( g(x) \)**: Differentiate \( g(x) \): \[ g'(x) = \frac{d}{dx}((3 + g'(1) + g''(2)) \cdot x^2 + xg'(1) + 2) \] This gives: \[ g'(x) = 2(3 + g'(1) + g''(2)) \cdot x + g'(1) \] 7. **Evaluate \( g'(1) \)**: Substitute \( x = 1 \): \[ g'(1) = 2(3 + g'(1) + g''(2)) + g'(1) \] Rearranging gives: \[ g'(1) = 6 + 2g'(1) + 2g''(2) \] Rearranging further: \[ -g'(1) = 6 + 2g''(2) \implies g'(1) = -6 - 2g''(2) \] 8. **Evaluate \( g''(2) \)**: Differentiate \( g'(x) \): \[ g''(x) = 2(3 + g'(1) + g''(2)) \] Substitute \( x = 2 \) into \( g''(x) \): \[ g''(2) = 2(3 + g'(1) + g''(2)) \] 9. **Final evaluations**: We can now evaluate the options: - For option 1: \( f'(1) + f'(2) = 0 \) - For option 2: \( g'(2) = g'(1) \) - For option 3: \( g''(2) + f''(3) = 6 \) After evaluating all the steps and substituting back into the equations, we find that: - **Option 1 is correct**: \( f'(1) + f'(2) = 0 \)
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    MTG-WBJEE|Exercise WB JEE Previous years questions (Category 3 : More than One Option correct type)|1 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=x^(2)+xg^(2)(1)+g'(2) and g(x)=f(1)*x^(2)+xf'(x)+f''(x) then find f(x) and g(x)

Let f (x) and g (x) be two differentiable functions, defined as: f (x)=x ^(2) +xg'(1)+g'' (2) and g (x)= f (1) x^(2) +x f' (x)+ f''(x). The value of f (1) +g (-1) is:

Let f (x) and g (x) be two differentiable functions, defined as: f (x)^(2)=x ^(2) +xg'(1)+g'' (2) and g (x)= f(1)x^(2) +x f' (x)+ f''(x). The number of integers in the domain of the function F(x)= sqrt(-(f(x))/(g (x)))+sqrt(3-x) is:

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The domain of the function sqrt((f(x))/(g(x))) is

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value of g(0) is

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value of f(3) is

Let f(x)=3x^(2)+4xg'(1)+g''(2) and, g(x)=2x^(2)+3xf'(2)+f''(3)" for all "x in R. Then,