Home
Class 12
MATHS
If tan A =ntanB , sinA =msinB , prove th...

If `tan A =ntanB , sinA =msinB , `prove that , `cos^2A=(m^2-1)/(n^2-1)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If tanA=ntanB and sinA=msinB, prove that cos^2A=[m^2-1]/[n^2-1]

If tan A=n tan B and sin A=m sin B, prove that cos^(2)A=(m^(2)-1)/(n^(2)-1)

If tan A = n tan B and sin A = m sin B, prove that : cos^(2) A = (m^(2) - 1)/(n^(2) - 1)

If tan A = n tan B and sin A = m sin B , show that cos^(2)A= (m^(2)-1)/(n^(2)-1) .

If tan alpha= n tan beta and sin alpha= m sin beta , prove that cos^2 alpha= (m^2-1)/(n^2-1) .

If secA + tan A = m , prove that : sinA= (m^2-1)/(m^2+1) .

If "tan" alpha= n tan beta and sin alpha =m sin beta prove that : cos^(2)alpha=(m^(2)-1)/(n^(2)-1)

Prove that cos2A=(1-tan^2 A)/(1+tan^2 A)

If tantheta=ntanalpha and sintheta=msinalpha then prove that cos^(2)theta=(m^(2)-1)/(n^(2)-1),n!=+-1.

If tanA=ntanBandsinA=msinB then sec^(3)A((m^(2)-1)/(n^(2)-1))^((3)/(2) =?