Home
Class 11
MATHS
" 8.If "x^(2)+y^(2)=t-(1)/(t)" and "x^(4...

" 8.If "x^(2)+y^(2)=t-(1)/(t)" and "x^(4)+y^(4)=t^(2)+(1)/(t^(2))" prove that "(dy)/(dx)=(1)/(x^(3)y)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)

If x^(2)+y^(2)=t-1/t andx^(4)+y^(4)=t^(2)+(1)/(t^(2)), then prove that (dy)/(dx)=(1)/(x^(3)y).

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) , show that (dy)/(dx)=(1)/(x^(3)y) .

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) , show that, x^(3)y(dy)/(dx)=1

If x^(2) + y^(2) = t + (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) then (dy)/(dx) =

If x^(2) + y^(2) = t - (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) , then (dy)/(dx) =

If x^(2) +y^(2) =t-(1)/(t) andx^(4) +y^(4) =t^(2) +(1)/( t^(2)),then (dy)/(dx) =

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then show that (dy)/(dx)=-(y)/(x) .

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=?