Home
Class 12
MATHS
Prove that cotA+cotB+cotC=(a^2+b^2+c^2)/...

Prove that `cotA+cotB+cotC=(a^2+b^2+c^2)/(4Delta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaABC , prove that: cotA/2+cotB/2+cotC/2=(a+b+c)/(a+b-c)cotC/2

If a^2,b^2,c^2 are in A.P., prove that cotA ,cotB ,cotC are in AdotPdot

If a^2,b^2,c^2 are in A.P., prove that cotA ,cotB ,cotC are in AdotPdot

In a triangle ABC, if sinAsin(B-C)=sinCsin(A-B), then prove that cotA ,cotB ,cotC are in AdotPdot

In a triangle ABC, if sinAsin(B-C)=sinCsin(A-B), then prove that cotA ,cotB ,cotC are in AdotPdot

In a triangle ABC, if sinAsin(B-C)=sinCsin(A-B), then prove that cotA ,cotB ,cotC are in AdotPdot

In DeltaABC , a^(2),b^(2),c^(2) are in A.P. Prove that cotA, cotB, cotC are also in A.P.

In any triangle ABC prove that a^2cotA+b^2cotB+c^2cotC=(abc)/R

In a triangle A+B+C=90 then prove that cotA+cotB+cotC=cotAcotBcotC

Show that a^(2)cotA+b^(2)cotB+c^(2)cotC=(abc)/(R)