Home
Class 11
MATHS
If 9^("log"3("log"(2) x)) = "log"(2)x - ...

If `9^("log"_3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1,` then x =

Promotional Banner

Similar Questions

Explore conceptually related problems

If "log"_(3) x + "log"_(9)x^(2) + "log"_(27)x^(3) = 9 , then x =

If "log"_(3) x + "log"_(9)x^(2) + "log"_(27)x^(3) = 9 , then x =

Solve for 'x' 9^("log"_3("log"_2x))="log"_2x-("log"_2x)^2+1

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

Solve the following equation for x: 9^(log_(3)(log_(2)x))=log_(2)x-(log_(2)x)^(2)+1

If 4^("log"_(9)3) + 9^("log"_(2)4) = 10^("log"_(x)83), "then" x =

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to