Home
Class 12
PHYSICS
The position (in meters) of a particle m...

The position (in meters) of a particle moving on the x-axis is given by: ` x=2+9t +3t^(2) -t^(3) ,` where t is time in seconds . The distance travelled by the particle between t= 1s and t= 4s is m.

Promotional Banner

Similar Questions

Explore conceptually related problems

The position of a particle is given by x=2(t-t^(2)) where t is expressed in seconds and x is in metre. The total distance travelled by the paticle between t=0 to t=1s is

The position of a particle is given by x=2(t-t^(2)) where t is expressed in seconds and x is in metre. The total distance travelled by the paticle between t=0 to t=1s is

The position of a particle moving in a string line is given by x = 3t^(3) - 18 t^(2) + 36 t Here, x is in m and t in second . Then

The position of the particle moving along x-axis is given by x=2t-3t^(2)+t^(3) where x is in mt and t is in second.The velocity of the particle at t=2sec is

The position of a particle moving along a straight line is defined by the relation, x=t^(3)-6t^(2)-15t+40 where x is in meters and t in seconds.The distance travelled by the particle from t=0 to t=2 s is?

The position of a particle moving in a straight line is given by x=3t^(3)-18t^(2)+36t Here, x is in m and t in second. Then

The position of a particle moving on the x-axis is given by x=t^(3)+4t^(2)-2t+5 where x is in meter and t is in seconds (i) the velocity of the particle at t=4 s is 78 m//s (ii) the acceleration of the particle at t=4 s is 32 m//s^(2) (iii) the average velocity during the interval t=0 to t=4 s is 30 m//s (iv) the average acceleration during the interval t=0 to t=4 s is 20 m//s^(2)

A particle is moving along the x-axis such that s=6t-t^(2) , where s in meters and t is in second. Find the displacement and distance traveled by the particle during time interval t=0 to t=5 s .

The x -coordinate of a particle moving along x -axis varies with time as x=6-4t+t^(2), where x in meter and t in second then distance covered by the particle in first 3 seconds is

The velocity 'v' of a particle moving along straight line is given in terms of time t as v=3(t^(2)-t) where t is in seconds and v is in m//s . The distance travelled by particle from t=0 to t=2 seconds is :