Home
Class 12
MATHS
दो सदिश vec(a) व vec(b) परस्पर लम्बवत ह...

दो सदिश `vec(a)` व `vec(b)` परस्पर लम्बवत होंगे यदि

Promotional Banner

Similar Questions

Explore conceptually related problems

Revision|सदिश vec A का सदिश vec B पर प्रक्षेप|सदिश का लंबवत घटको में त्रिविमीय वियोजन|दिक् कोज्याएँ|प्रश्न|किसी समतल में गति|OMR|Summary

For the vector vec(a) and vec (b) if |vec(a) + vec(b)| = |vec(a) - vec(b)| , show that vec(a) and vec (b) are perpendicular

For non-zero vectors vec(a) and vec(b), " if " |vec(a) + vec(b)| lt |vec(a) - vec(b)| , then vec(a) and vec(b) are-

Prove that (vec(a)+vec(b)).(vec(a)+vec(b)) = |vec(a)|^(2) + |vec(b)|^(2) , if and only if vec(a) , vec(b) are perpendicular , given vec(a) 1= vec (0) , vec (b) != vec (0)

If vec(a), vec(b), vec(c ) are unit vectors such that vec(a) + vec(b) + vec(c )= vec(0), " then " vec(a).vec(b) + vec(b).vec(c ) + vec(c ).vec(a) =

If (vec(a) + vec(b)) _|_ vec(b) and (vec(a) + 2 vec(b))_|_ vec(a) , then

If |vec(a)|= |vec(b)| =1 and |vec(a) xx vec(b)|= vec(a).vec(b) , then |vec(a) + vec(b)|^(2)=

vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is vec (a). vec(b) + vec(b). vec(c) + vec(c). vec (a) equal to ?